1 / | | 2*sin(x)*cos(5*x)*cos(x)*1 dx | / 0
Integral(2*sin(x)*cos(5*x)*cos(x)*1, (x, 0, 1))
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
The result is:
So, the result is:
Now simplify:
Add the constant of integration:
The answer is:
/ 7 3 | 5 32*cos (x) 10*cos (x) | 2*sin(x)*cos(5*x)*cos(x)*1 dx = C + 8*cos (x) - ---------- - ---------- | 7 3 /
2 2 2 2*sin (1)*cos(5) 2*cos (1)*cos(5) 10*cos(1)*sin(1)*sin(5) - -- - ---------------- + ---------------- + ----------------------- 21 21 21 21
=
2 2 2 2*sin (1)*cos(5) 2*cos (1)*cos(5) 10*cos(1)*sin(1)*sin(5) - -- - ---------------- + ---------------- + ----------------------- 21 21 21 21
Use the examples entering the upper and lower limits of integration.