Mister Exam

Other calculators


2sin(x)cos(5x)cos(x)dx

Integral of 2sin(x)cos(5x)cos(x)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                              
  /                              
 |                               
 |  2*sin(x)*cos(5*x)*cos(x)*1 dx
 |                               
/                                
0                                
012sin(x)cos(5x)cos(x)1dx\int\limits_{0}^{1} 2 \sin{\left(x \right)} \cos{\left(5 x \right)} \cos{\left(x \right)} 1\, dx
Integral(2*sin(x)*cos(5*x)*cos(x)*1, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    2sin(x)cos(5x)cos(x)1dx=2sin(x)cos(x)cos(5x)dx\int 2 \sin{\left(x \right)} \cos{\left(5 x \right)} \cos{\left(x \right)} 1\, dx = 2 \int \sin{\left(x \right)} \cos{\left(x \right)} \cos{\left(5 x \right)}\, dx

    1. Rewrite the integrand:

      sin(x)cos(x)cos(5x)=16sin(x)cos6(x)20sin(x)cos4(x)+5sin(x)cos2(x)\sin{\left(x \right)} \cos{\left(x \right)} \cos{\left(5 x \right)} = 16 \sin{\left(x \right)} \cos^{6}{\left(x \right)} - 20 \sin{\left(x \right)} \cos^{4}{\left(x \right)} + 5 \sin{\left(x \right)} \cos^{2}{\left(x \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        16sin(x)cos6(x)dx=16sin(x)cos6(x)dx\int 16 \sin{\left(x \right)} \cos^{6}{\left(x \right)}\, dx = 16 \int \sin{\left(x \right)} \cos^{6}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          u6du\int u^{6}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u6)du=u6du\int \left(- u^{6}\right)\, du = - \int u^{6}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

            So, the result is: u77- \frac{u^{7}}{7}

          Now substitute uu back in:

          cos7(x)7- \frac{\cos^{7}{\left(x \right)}}{7}

        So, the result is: 16cos7(x)7- \frac{16 \cos^{7}{\left(x \right)}}{7}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (20sin(x)cos4(x))dx=20sin(x)cos4(x)dx\int \left(- 20 \sin{\left(x \right)} \cos^{4}{\left(x \right)}\right)\, dx = - 20 \int \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          u4du\int u^{4}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u4)du=u4du\int \left(- u^{4}\right)\, du = - \int u^{4}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

            So, the result is: u55- \frac{u^{5}}{5}

          Now substitute uu back in:

          cos5(x)5- \frac{\cos^{5}{\left(x \right)}}{5}

        So, the result is: 4cos5(x)4 \cos^{5}{\left(x \right)}

      1. The integral of a constant times a function is the constant times the integral of the function:

        5sin(x)cos2(x)dx=5sin(x)cos2(x)dx\int 5 \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx = 5 \int \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          u2du\int u^{2}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u33- \frac{u^{3}}{3}

          Now substitute uu back in:

          cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

        So, the result is: 5cos3(x)3- \frac{5 \cos^{3}{\left(x \right)}}{3}

      The result is: 16cos7(x)7+4cos5(x)5cos3(x)3- \frac{16 \cos^{7}{\left(x \right)}}{7} + 4 \cos^{5}{\left(x \right)} - \frac{5 \cos^{3}{\left(x \right)}}{3}

    So, the result is: 32cos7(x)7+8cos5(x)10cos3(x)3- \frac{32 \cos^{7}{\left(x \right)}}{7} + 8 \cos^{5}{\left(x \right)} - \frac{10 \cos^{3}{\left(x \right)}}{3}

  2. Now simplify:

    2(48cos4(x)+84cos2(x)35)cos3(x)21\frac{2 \left(- 48 \cos^{4}{\left(x \right)} + 84 \cos^{2}{\left(x \right)} - 35\right) \cos^{3}{\left(x \right)}}{21}

  3. Add the constant of integration:

    2(48cos4(x)+84cos2(x)35)cos3(x)21+constant\frac{2 \left(- 48 \cos^{4}{\left(x \right)} + 84 \cos^{2}{\left(x \right)} - 35\right) \cos^{3}{\left(x \right)}}{21}+ \mathrm{constant}


The answer is:

2(48cos4(x)+84cos2(x)35)cos3(x)21+constant\frac{2 \left(- 48 \cos^{4}{\left(x \right)} + 84 \cos^{2}{\left(x \right)} - 35\right) \cos^{3}{\left(x \right)}}{21}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                      7            3   
 |                                          5      32*cos (x)   10*cos (x)
 | 2*sin(x)*cos(5*x)*cos(x)*1 dx = C + 8*cos (x) - ---------- - ----------
 |                                                     7            3     
/                                                                         
cos(3x)3cos(7x)72{{{{\cos \left(3\,x\right)}\over{3}}-{{\cos \left(7\,x\right) }\over{7}}}\over{2}}
The graph
0.001.000.100.200.300.400.500.600.700.800.901-1
The answer [src]
            2                  2                                    
  2    2*sin (1)*cos(5)   2*cos (1)*cos(5)   10*cos(1)*sin(1)*sin(5)
- -- - ---------------- + ---------------- + -----------------------
  21          21                 21                     21          
2(3cos77cos384121)2\,\left(-{{3\,\cos 7-7\,\cos 3}\over{84}}-{{1}\over{21}}\right)
=
=
            2                  2                                    
  2    2*sin (1)*cos(5)   2*cos (1)*cos(5)   10*cos(1)*sin(1)*sin(5)
- -- - ---------------- + ---------------- + -----------------------
  21          21                 21                     21          
10sin(1)sin(5)cos(1)212212sin2(1)cos(5)21+2cos2(1)cos(5)21\frac{10 \sin{\left(1 \right)} \sin{\left(5 \right)} \cos{\left(1 \right)}}{21} - \frac{2}{21} - \frac{2 \sin^{2}{\left(1 \right)} \cos{\left(5 \right)}}{21} + \frac{2 \cos^{2}{\left(1 \right)} \cos{\left(5 \right)}}{21}
Numerical answer [src]
-0.314087005696025
-0.314087005696025
The graph
Integral of 2sin(x)cos(5x)cos(x)dx dx

    Use the examples entering the upper and lower limits of integration.