Mister Exam

Other calculators


2sin(x)cos(5x)cos(x)dx

Integral of 2sin(x)cos(5x)cos(x)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                              
  /                              
 |                               
 |  2*sin(x)*cos(5*x)*cos(x)*1 dx
 |                               
/                                
0                                
$$\int\limits_{0}^{1} 2 \sin{\left(x \right)} \cos{\left(5 x \right)} \cos{\left(x \right)} 1\, dx$$
Integral(2*sin(x)*cos(5*x)*cos(x)*1, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      The result is:

    So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                      7            3   
 |                                          5      32*cos (x)   10*cos (x)
 | 2*sin(x)*cos(5*x)*cos(x)*1 dx = C + 8*cos (x) - ---------- - ----------
 |                                                     7            3     
/                                                                         
$${{{{\cos \left(3\,x\right)}\over{3}}-{{\cos \left(7\,x\right) }\over{7}}}\over{2}}$$
The graph
The answer [src]
            2                  2                                    
  2    2*sin (1)*cos(5)   2*cos (1)*cos(5)   10*cos(1)*sin(1)*sin(5)
- -- - ---------------- + ---------------- + -----------------------
  21          21                 21                     21          
$$2\,\left(-{{3\,\cos 7-7\,\cos 3}\over{84}}-{{1}\over{21}}\right)$$
=
=
            2                  2                                    
  2    2*sin (1)*cos(5)   2*cos (1)*cos(5)   10*cos(1)*sin(1)*sin(5)
- -- - ---------------- + ---------------- + -----------------------
  21          21                 21                     21          
$$\frac{10 \sin{\left(1 \right)} \sin{\left(5 \right)} \cos{\left(1 \right)}}{21} - \frac{2}{21} - \frac{2 \sin^{2}{\left(1 \right)} \cos{\left(5 \right)}}{21} + \frac{2 \cos^{2}{\left(1 \right)} \cos{\left(5 \right)}}{21}$$
Numerical answer [src]
-0.314087005696025
-0.314087005696025
The graph
Integral of 2sin(x)cos(5x)cos(x)dx dx

    Use the examples entering the upper and lower limits of integration.