Integral of 2sin(x)cos(5x)cos(x)dx dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin(x)cos(5x)cos(x)1dx=2∫sin(x)cos(x)cos(5x)dx
-
Rewrite the integrand:
sin(x)cos(x)cos(5x)=16sin(x)cos6(x)−20sin(x)cos4(x)+5sin(x)cos2(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫16sin(x)cos6(x)dx=16∫sin(x)cos6(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u6du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u6)du=−∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
So, the result is: −7u7
Now substitute u back in:
−7cos7(x)
So, the result is: −716cos7(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−20sin(x)cos4(x))dx=−20∫sin(x)cos4(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u4du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u4)du=−∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
So, the result is: −5u5
Now substitute u back in:
−5cos5(x)
So, the result is: 4cos5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫5sin(x)cos2(x)dx=5∫sin(x)cos2(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u2du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u2)du=−∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −3u3
Now substitute u back in:
−3cos3(x)
So, the result is: −35cos3(x)
The result is: −716cos7(x)+4cos5(x)−35cos3(x)
So, the result is: −732cos7(x)+8cos5(x)−310cos3(x)
-
Now simplify:
212(−48cos4(x)+84cos2(x)−35)cos3(x)
-
Add the constant of integration:
212(−48cos4(x)+84cos2(x)−35)cos3(x)+constant
The answer is:
212(−48cos4(x)+84cos2(x)−35)cos3(x)+constant
The answer (Indefinite)
[src]
/ 7 3
| 5 32*cos (x) 10*cos (x)
| 2*sin(x)*cos(5*x)*cos(x)*1 dx = C + 8*cos (x) - ---------- - ----------
| 7 3
/
23cos(3x)−7cos(7x)
The graph
2 2
2 2*sin (1)*cos(5) 2*cos (1)*cos(5) 10*cos(1)*sin(1)*sin(5)
- -- - ---------------- + ---------------- + -----------------------
21 21 21 21
2(−843cos7−7cos3−211)
=
2 2
2 2*sin (1)*cos(5) 2*cos (1)*cos(5) 10*cos(1)*sin(1)*sin(5)
- -- - ---------------- + ---------------- + -----------------------
21 21 21 21
2110sin(1)sin(5)cos(1)−212−212sin2(1)cos(5)+212cos2(1)cos(5)
Use the examples entering the upper and lower limits of integration.