Mister Exam

Integral of 2sinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  2*sin(x) dx
 |             
/              
0              
012sin(x)dx\int\limits_{0}^{1} 2 \sin{\left(x \right)}\, dx
Integral(2*sin(x), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    2sin(x)dx=2sin(x)dx\int 2 \sin{\left(x \right)}\, dx = 2 \int \sin{\left(x \right)}\, dx

    1. The integral of sine is negative cosine:

      sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

    So, the result is: 2cos(x)- 2 \cos{\left(x \right)}

  2. Add the constant of integration:

    2cos(x)+constant- 2 \cos{\left(x \right)}+ \mathrm{constant}


The answer is:

2cos(x)+constant- 2 \cos{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                          
 |                           
 | 2*sin(x) dx = C - 2*cos(x)
 |                           
/                            
2sin(x)dx=C2cos(x)\int 2 \sin{\left(x \right)}\, dx = C - 2 \cos{\left(x \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.905-5
The answer [src]
2 - 2*cos(1)
22cos(1)2 - 2 \cos{\left(1 \right)}
=
=
2 - 2*cos(1)
22cos(1)2 - 2 \cos{\left(1 \right)}
2 - 2*cos(1)
Numerical answer [src]
0.919395388263721
0.919395388263721
The graph
Integral of 2sinx dx

    Use the examples entering the upper and lower limits of integration.