Mister Exam

Integral of 2sin4x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0              
  /              
 |               
 |  2*sin(4*x) dx
 |               
/                
pi               
--               
4                
π402sin(4x)dx\int\limits_{\frac{\pi}{4}}^{0} 2 \sin{\left(4 x \right)}\, dx
Integral(2*sin(4*x), (x, pi/4, 0))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    2sin(4x)dx=2sin(4x)dx\int 2 \sin{\left(4 x \right)}\, dx = 2 \int \sin{\left(4 x \right)}\, dx

    1. Let u=4xu = 4 x.

      Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

      sin(u)16du\int \frac{\sin{\left(u \right)}}{16}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        sin(u)4du=sin(u)du4\int \frac{\sin{\left(u \right)}}{4}\, du = \frac{\int \sin{\left(u \right)}\, du}{4}

        1. The integral of sine is negative cosine:

          sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

        So, the result is: cos(u)4- \frac{\cos{\left(u \right)}}{4}

      Now substitute uu back in:

      cos(4x)4- \frac{\cos{\left(4 x \right)}}{4}

    So, the result is: cos(4x)2- \frac{\cos{\left(4 x \right)}}{2}

  2. Add the constant of integration:

    cos(4x)2+constant- \frac{\cos{\left(4 x \right)}}{2}+ \mathrm{constant}


The answer is:

cos(4x)2+constant- \frac{\cos{\left(4 x \right)}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                            
 |                     cos(4*x)
 | 2*sin(4*x) dx = C - --------
 |                        2    
/                              
cos(4x)2-{{\cos \left(4\,x\right)}\over{2}}
The graph
0.000.050.100.150.200.250.300.350.400.450.500.550.600.650.700.752.5-2.5
The answer [src]
-1
2(cosπ414)2\,\left({{\cos \pi}\over{4}}-{{1}\over{4}}\right)
=
=
-1
1-1
Numerical answer [src]
-1.0
-1.0
The graph
Integral of 2sin4x dx

    Use the examples entering the upper and lower limits of integration.