Mister Exam

Other calculators


dx/(5-12*x-9*x^2)

Integral of dx/(5-12*x-9*x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |         1          
 |  --------------- dx
 |                2   
 |  5 - 12*x - 9*x    
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \frac{1}{- 9 x^{2} + \left(5 - 12 x\right)}\, dx$$
Integral(1/(5 - 12*x - 9*x^2), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                     
 |                                                      
 |        1                 log(-1/3 + x)   log(5/3 + x)
 | --------------- dx = C - ------------- + ------------
 |               2                18             18     
 | 5 - 12*x - 9*x                                       
 |                                                      
/                                                       
$$\int \frac{1}{- 9 x^{2} + \left(5 - 12 x\right)}\, dx = C - \frac{\log{\left(x - \frac{1}{3} \right)}}{18} + \frac{\log{\left(x + \frac{5}{3} \right)}}{18}$$
The graph
The answer [src]
nan
$$\text{NaN}$$
=
=
nan
$$\text{NaN}$$
nan
Numerical answer [src]
-6.50721595881408
-6.50721595881408
The graph
Integral of dx/(5-12*x-9*x^2) dx

    Use the examples entering the upper and lower limits of integration.