Mister Exam

Other calculators

Integral of 12t^2×sqrt(t^3+5) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |           ________   
 |      2   /  3        
 |  12*t *\/  t  + 5  dt
 |                      
/                       
0                       
$$\int\limits_{0}^{1} 12 t^{2} \sqrt{t^{3} + 5}\, dt$$
Integral((12*t^2)*sqrt(t^3 + 5), (t, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                        
 |                                      3/2
 |          ________            / 3    \   
 |     2   /  3               8*\t  + 5/   
 | 12*t *\/  t  + 5  dt = C + -------------
 |                                  3      
/                                          
$$\int 12 t^{2} \sqrt{t^{3} + 5}\, dt = C + \frac{8 \left(t^{3} + 5\right)^{\frac{3}{2}}}{3}$$
The graph
The answer [src]
                ___
     ___   40*\/ 5 
16*\/ 6  - --------
              3    
$$- \frac{40 \sqrt{5}}{3} + 16 \sqrt{6}$$
=
=
                ___
     ___   40*\/ 5 
16*\/ 6  - --------
              3    
$$- \frac{40 \sqrt{5}}{3} + 16 \sqrt{6}$$
16*sqrt(6) - 40*sqrt(5)/3
Numerical answer [src]
9.37759618453365
9.37759618453365

    Use the examples entering the upper and lower limits of integration.