1 / | | ________ | 2 / 3 | 12*t *\/ t + 5 dt | / 0
Integral((12*t^2)*sqrt(t^3 + 5), (t, 0, 1))
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
Now simplify:
Add the constant of integration:
The answer is:
/ | 3/2 | ________ / 3 \ | 2 / 3 8*\t + 5/ | 12*t *\/ t + 5 dt = C + ------------- | 3 /
___
___ 40*\/ 5
16*\/ 6 - --------
3
=
___
___ 40*\/ 5
16*\/ 6 - --------
3
16*sqrt(6) - 40*sqrt(5)/3
Use the examples entering the upper and lower limits of integration.