Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of exp(x)*sin(x) Integral of exp(x)*sin(x)
  • Integral of x^3*dx Integral of x^3*dx
  • Integral of exp(2*x) Integral of exp(2*x)
  • Integral of sin(cosx)
  • Identical expressions

  • ∫1_ three ^ four ▒〖√(𝑥−3)𝑑𝑥〗
  • ∫1_3 to the power of 4▒〖√(𝑥−3)𝑑𝑥〗
  • ∫1_ three to the power of four ▒〖√(𝑥−3)𝑑𝑥〗
  • ∫1_34▒〖√(𝑥−3)𝑑𝑥〗
  • ∫1_34▒〖√𝑥−3𝑑𝑥〗
  • ∫1_3⁴▒〖√(𝑥−3)𝑑𝑥〗
  • ∫1_3^4▒〖√𝑥−3𝑑𝑥〗

Integral of ∫1_3^4▒〖√(𝑥−3)𝑑𝑥〗 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |          _______   
 |  28561*\/ x - 3  dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} 28561 \sqrt{x - 3}\, dx$$
Integral(28561*sqrt(x - 3), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of is when :

      Now substitute back in:

    So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                                       3/2
 |         _______          57122*(x - 3)   
 | 28561*\/ x - 3  dx = C + ----------------
 |                                 3        
/                                           
$$\int 28561 \sqrt{x - 3}\, dx = C + \frac{57122 \left(x - 3\right)^{\frac{3}{2}}}{3}$$
The graph
The answer [src]
                           ___
          ___   114244*I*\/ 2 
57122*I*\/ 3  - --------------
                      3       
$$- \frac{114244 \sqrt{2} i}{3} + 57122 \sqrt{3} i$$
=
=
                           ___
          ___   114244*I*\/ 2 
57122*I*\/ 3  - --------------
                      3       
$$- \frac{114244 \sqrt{2} i}{3} + 57122 \sqrt{3} i$$
57122*i*sqrt(3) - 114244*i*sqrt(2)/3
Numerical answer [src]
(0.0 + 45083.0681566988j)
(0.0 + 45083.0681566988j)

    Use the examples entering the upper and lower limits of integration.