Mister Exam

Other calculators

Integral of 13sin(3x)*e^(-3x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |               -3*x   
 |  13*sin(3*x)*E     dx
 |                      
/                       
0                       
$$\int\limits_{0}^{1} e^{- 3 x} 13 \sin{\left(3 x \right)}\, dx$$
Integral((13*sin(3*x))*E^(-3*x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. Use integration by parts, noting that the integrand eventually repeats itself.

            1. For the integrand :

              Let and let .

              Then .

            2. For the integrand :

              Let and let .

              Then .

            3. Notice that the integrand has repeated itself, so move it to one side:

              Therefore,

          Now substitute back in:

        So, the result is:

      Now substitute back in:

    Method #2

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Use integration by parts, noting that the integrand eventually repeats itself.

          1. For the integrand :

            Let and let .

            Then .

          2. For the integrand :

            Let and let .

            Then .

          3. Notice that the integrand has repeated itself, so move it to one side:

            Therefore,

        So, the result is:

      Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                
 |                                         -3*x       -3*x         
 |              -3*x          13*cos(3*x)*e       13*e    *sin(3*x)
 | 13*sin(3*x)*E     dx = C - ----------------- - -----------------
 |                                    6                   6        
/                                                                  
$$\int e^{- 3 x} 13 \sin{\left(3 x \right)}\, dx = C - \frac{13 e^{- 3 x} \sin{\left(3 x \right)}}{6} - \frac{13 e^{- 3 x} \cos{\left(3 x \right)}}{6}$$
The graph
The answer [src]
                -3       -3       
13   13*cos(3)*e     13*e  *sin(3)
-- - ------------- - -------------
6          6               6      
$$- \frac{13 \sin{\left(3 \right)}}{6 e^{3}} - \frac{13 \cos{\left(3 \right)}}{6 e^{3}} + \frac{13}{6}$$
=
=
                -3       -3       
13   13*cos(3)*e     13*e  *sin(3)
-- - ------------- - -------------
6          6               6      
$$- \frac{13 \sin{\left(3 \right)}}{6 e^{3}} - \frac{13 \cos{\left(3 \right)}}{6 e^{3}} + \frac{13}{6}$$
13/6 - 13*cos(3)*exp(-3)/6 - 13*exp(-3)*sin(3)/6
Numerical answer [src]
2.25823622401557
2.25823622401557

    Use the examples entering the upper and lower limits of integration.