Integral of 13sin(3x)*e^(-3x) dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=3x.
Then let du=3dx and substitute 313du:
∫313e−usin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫e−usin(u)du=313∫e−usin(u)du
-
Let u=−u.
Then let du=−du and substitute du:
∫eusin(u)du
-
Use integration by parts, noting that the integrand eventually repeats itself.
-
For the integrand eusin(u):
Let u(u)=sin(u) and let dv(u)=eu.
Then ∫eusin(u)du=eusin(u)−∫eucos(u)du.
-
For the integrand eucos(u):
Let u(u)=cos(u) and let dv(u)=eu.
Then ∫eusin(u)du=eusin(u)−eucos(u)+∫(−eusin(u))du.
-
Notice that the integrand has repeated itself, so move it to one side:
2∫eusin(u)du=eusin(u)−eucos(u)
Therefore,
∫eusin(u)du=2eusin(u)−2eucos(u)
Now substitute u back in:
−2e−usin(u)−2e−ucos(u)
So, the result is: −613e−usin(u)−613e−ucos(u)
Now substitute u back in:
−613e−3xsin(3x)−613e−3xcos(3x)
Method #2
-
Let u=−3x.
Then let du=−3dx and substitute 313du:
∫313eusin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫eusin(u)du=313∫eusin(u)du
-
Use integration by parts, noting that the integrand eventually repeats itself.
-
For the integrand eusin(u):
Let u(u)=sin(u) and let dv(u)=eu.
Then ∫eusin(u)du=eusin(u)−∫eucos(u)du.
-
For the integrand eucos(u):
Let u(u)=cos(u) and let dv(u)=eu.
Then ∫eusin(u)du=eusin(u)−eucos(u)+∫(−eusin(u))du.
-
Notice that the integrand has repeated itself, so move it to one side:
2∫eusin(u)du=eusin(u)−eucos(u)
Therefore,
∫eusin(u)du=2eusin(u)−2eucos(u)
So, the result is: 613eusin(u)−613eucos(u)
Now substitute u back in:
−613e−3xsin(3x)−613e−3xcos(3x)
-
Now simplify:
−6132e−3xsin(3x+4π)
-
Add the constant of integration:
−6132e−3xsin(3x+4π)+constant
The answer is:
−6132e−3xsin(3x+4π)+constant
The answer (Indefinite)
[src]
/
| -3*x -3*x
| -3*x 13*cos(3*x)*e 13*e *sin(3*x)
| 13*sin(3*x)*E dx = C - ----------------- - -----------------
| 6 6
/
∫e−3x13sin(3x)dx=C−613e−3xsin(3x)−613e−3xcos(3x)
The graph
-3 -3
13 13*cos(3)*e 13*e *sin(3)
-- - ------------- - -------------
6 6 6
−6e313sin(3)−6e313cos(3)+613
=
-3 -3
13 13*cos(3)*e 13*e *sin(3)
-- - ------------- - -------------
6 6 6
−6e313sin(3)−6e313cos(3)+613
13/6 - 13*cos(3)*exp(-3)/6 - 13*exp(-3)*sin(3)/6
Use the examples entering the upper and lower limits of integration.