Mister Exam

Other calculators

x^2+6x/6-2x+3/2<=12 inequation

A inequation with variable

The solution

You have entered [src]
 2   6*x         3      
x  + --- - 2*x + - <= 12
      6          2      
$$\left(- 2 x + \left(x^{2} + \frac{6 x}{6}\right)\right) + \frac{3}{2} \leq 12$$
-2*x + x^2 + (6*x)/6 + 3/2 <= 12
Detail solution
Given the inequality:
$$\left(- 2 x + \left(x^{2} + \frac{6 x}{6}\right)\right) + \frac{3}{2} \leq 12$$
To solve this inequality, we must first solve the corresponding equation:
$$\left(- 2 x + \left(x^{2} + \frac{6 x}{6}\right)\right) + \frac{3}{2} = 12$$
Solve:
Move right part of the equation to
left part with negative sign.

The equation is transformed from
$$\left(- 2 x + \left(x^{2} + \frac{6 x}{6}\right)\right) + \frac{3}{2} = 12$$
to
$$\left(\left(- 2 x + \left(x^{2} + \frac{6 x}{6}\right)\right) + \frac{3}{2}\right) - 12 = 0$$
Expand the expression in the equation
$$\left(\left(- 2 x + \left(x^{2} + \frac{6 x}{6}\right)\right) + \frac{3}{2}\right) - 12 = 0$$
We get the quadratic equation
$$x^{2} - x - \frac{21}{2} = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = -1$$
$$c = - \frac{21}{2}$$
, then
D = b^2 - 4 * a * c = 

(-1)^2 - 4 * (1) * (-21/2) = 43

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \frac{1}{2} + \frac{\sqrt{43}}{2}$$
$$x_{2} = \frac{1}{2} - \frac{\sqrt{43}}{2}$$
$$x_{1} = \frac{1}{2} + \frac{\sqrt{43}}{2}$$
$$x_{2} = \frac{1}{2} - \frac{\sqrt{43}}{2}$$
$$x_{1} = \frac{1}{2} + \frac{\sqrt{43}}{2}$$
$$x_{2} = \frac{1}{2} - \frac{\sqrt{43}}{2}$$
This roots
$$x_{2} = \frac{1}{2} - \frac{\sqrt{43}}{2}$$
$$x_{1} = \frac{1}{2} + \frac{\sqrt{43}}{2}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{2}$$
For example, let's take the point
$$x_{0} = x_{2} - \frac{1}{10}$$
=
$$\left(\frac{1}{2} - \frac{\sqrt{43}}{2}\right) + - \frac{1}{10}$$
=
$$\frac{2}{5} - \frac{\sqrt{43}}{2}$$
substitute to the expression
$$\left(- 2 x + \left(x^{2} + \frac{6 x}{6}\right)\right) + \frac{3}{2} \leq 12$$
$$\frac{3}{2} + \left(\left(\frac{6 \left(\frac{2}{5} - \frac{\sqrt{43}}{2}\right)}{6} + \left(\frac{2}{5} - \frac{\sqrt{43}}{2}\right)^{2}\right) - 2 \left(\frac{2}{5} - \frac{\sqrt{43}}{2}\right)\right) \leq 12$$
                 2               
     /      ____\      ____      
11   |2   \/ 43 |    \/ 43  <= 12
-- + |- - ------|  + ------      
10   \5     2   /      2         

but
                 2               
     /      ____\      ____      
11   |2   \/ 43 |    \/ 43  >= 12
-- + |- - ------|  + ------      
10   \5     2   /      2         

Then
$$x \leq \frac{1}{2} - \frac{\sqrt{43}}{2}$$
no execute
one of the solutions of our inequality is:
$$x \geq \frac{1}{2} - \frac{\sqrt{43}}{2} \wedge x \leq \frac{1}{2} + \frac{\sqrt{43}}{2}$$
         _____  
        /     \  
-------•-------•-------
       x2      x1
Solving inequality on a graph
Rapid solution [src]
   /           ____        ____     \
   |     1   \/ 43   1   \/ 43      |
And|x <= - + ------, - - ------ <= x|
   \     2     2     2     2        /
$$x \leq \frac{1}{2} + \frac{\sqrt{43}}{2} \wedge \frac{1}{2} - \frac{\sqrt{43}}{2} \leq x$$
(x <= 1/2 + sqrt(43)/2)∧(1/2 - sqrt(43)/2 <= x)
Rapid solution 2 [src]
       ____        ____ 
 1   \/ 43   1   \/ 43  
[- - ------, - + ------]
 2     2     2     2    
$$x\ in\ \left[\frac{1}{2} - \frac{\sqrt{43}}{2}, \frac{1}{2} + \frac{\sqrt{43}}{2}\right]$$
x in Interval(1/2 - sqrt(43)/2, 1/2 + sqrt(43)/2)