Given the inequality:
$$\log{\left(x \right)}^{2} + \log{\left(x \right)} - 2 > 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\log{\left(x \right)}^{2} + \log{\left(x \right)} - 2 = 0$$
Solve:
$$x_{1} = e$$
$$x_{2} = e^{-2}$$
$$x_{1} = e$$
$$x_{2} = e^{-2}$$
This roots
$$x_{2} = e^{-2}$$
$$x_{1} = e$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{2}$$
For example, let's take the point
$$x_{0} = x_{2} - \frac{1}{10}$$
=
$$- \frac{1}{10} + e^{-2}$$
=
$$- \frac{1}{10} + e^{-2}$$
substitute to the expression
$$\log{\left(x \right)}^{2} + \log{\left(x \right)} - 2 > 0$$
$$\log{\left(- \frac{1}{10} + e^{-2} \right)} - 2 + \log{\left(- \frac{1}{10} + e^{-2} \right)}^{2} > 0$$
2/ 1 -2\ / 1 -2\
-2 + log |- -- + e | + log|- -- + e | > 0
\ 10 / \ 10 /
one of the solutions of our inequality is:
$$x < e^{-2}$$
_____ _____
\ /
-------ο-------ο-------
x_2 x_1
Other solutions will get with the changeover to the next point
etc.
The answer:
$$x < e^{-2}$$
$$x > e$$