Mister Exam

Other calculators

  • How to use it?

  • Inequation:
  • 6*5^x-11/25^x+0.5-6*5^x+1>=0,25
  • tg(x)>=-3
  • 1/4^(x+4)>8√2
  • x(x+10)(x-3)>_0
  • Identical expressions

  • x^ two *log25(x)≥log25(x^ three)+x*log5(x)
  • x squared multiply by logarithm of 25(x)≥ logarithm of 25(x cubed ) plus x multiply by logarithm of 5(x)
  • x to the power of two multiply by logarithm of 25(x)≥ logarithm of 25(x to the power of three) plus x multiply by logarithm of 5(x)
  • x2*log25(x)≥log25(x3)+x*log5(x)
  • x2*log25x≥log25x3+x*log5x
  • x²*log25(x)≥log25(x³)+x*log5(x)
  • x to the power of 2*log25(x)≥log25(x to the power of 3)+x*log5(x)
  • x^2log25(x)≥log25(x^3)+xlog5(x)
  • x2log25(x)≥log25(x3)+xlog5(x)
  • x2log25x≥log25x3+xlog5x
  • x^2log25x≥log25x^3+xlog5x
  • Similar expressions

  • x^2*log25(x)≥log25(x^3)-x*log5(x)

x^2*log25(x)≥log25(x^3)+x*log5(x) inequation

A inequation with variable

The solution

You have entered [src]
 2              / 3\           
x *log(x)    log\x /   x*log(x)
--------- >= ------- + --------
 log(25)     log(25)    log(5) 
$$\frac{x^{2} \log{\left(x \right)}}{\log{\left(25 \right)}} \geq \frac{x \log{\left(x \right)}}{\log{\left(5 \right)}} + \frac{\log{\left(x^{3} \right)}}{\log{\left(25 \right)}}$$
x^2*log(x)/log(25) >= x*log(x)/log(5) + log(x^3)/log(25)
Detail solution
Given the inequality:
$$\frac{x^{2} \log{\left(x \right)}}{\log{\left(25 \right)}} \geq \frac{x \log{\left(x \right)}}{\log{\left(5 \right)}} + \frac{\log{\left(x^{3} \right)}}{\log{\left(25 \right)}}$$
To solve this inequality, we must first solve the corresponding equation:
$$\frac{x^{2} \log{\left(x \right)}}{\log{\left(25 \right)}} = \frac{x \log{\left(x \right)}}{\log{\left(5 \right)}} + \frac{\log{\left(x^{3} \right)}}{\log{\left(25 \right)}}$$
Solve:
Given the equation
$$\frac{x^{2} \log{\left(x \right)}}{\log{\left(25 \right)}} = \frac{x \log{\left(x \right)}}{\log{\left(5 \right)}} + \frac{\log{\left(x^{3} \right)}}{\log{\left(25 \right)}}$$
transform
$$\frac{\left(x^{2} + 2 x - 3\right) \log{\left(x \right)}}{2 \log{\left(5 \right)}} = 0$$
$$\frac{x^{2} \log{\left(x \right)}}{\log{\left(25 \right)}} + \frac{x \log{\left(x \right)}}{\log{\left(5 \right)}} - \frac{3 \log{\left(x \right)}}{\log{\left(25 \right)}} = 0$$
Do replacement
$$w = \log{\left(x \right)}$$
Expand brackets in the left part
-3*w/log25 + w*x/log5 + w*x^2/log25 = 0

Divide both parts of the equation by (-3*w/log(25) + w*x/log(5) + w*x^2/log(25))/w
w = 0 / ((-3*w/log(25) + w*x/log(5) + w*x^2/log(25))/w)

We get the answer: w = 0
do backward replacement
$$\log{\left(x \right)} = w$$
Given the equation
$$\log{\left(x \right)} = w$$
$$\log{\left(x \right)} = w$$
This equation is of the form:
log(v)=p

By definition log
v=e^p

then
$$1 x + 0 = e^{\frac{w}{1}}$$
simplify
$$x = e^{w}$$
substitute w:
$$x_{1} = 1$$
$$x_{2} = 3$$
$$x_{1} = 1$$
$$x_{2} = 3$$
This roots
$$x_{1} = 1$$
$$x_{2} = 3$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + 1$$
=
$$\frac{9}{10}$$
substitute to the expression
$$\frac{x^{2} \log{\left(x \right)}}{\log{\left(25 \right)}} \geq \frac{x \log{\left(x \right)}}{\log{\left(5 \right)}} + \frac{\log{\left(x^{3} \right)}}{\log{\left(25 \right)}}$$
$$\frac{\left(\frac{9}{10}\right)^{2} \log{\left(\frac{9}{10} \right)}}{\log{\left(25 \right)}} \geq \frac{\log{\left(\left(\frac{9}{10}\right)^{3} \right)}}{\log{\left(25 \right)}} + \frac{9 \log{\left(\frac{9}{10} \right)}}{10 \log{\left(5 \right)}}$$
                   /729 \              
81*log(9/10)    log|----|              
------------ >=    \1000/   9*log(9/10)
100*log(25)     --------- + -----------
                 log(25)     10*log(5) 

one of the solutions of our inequality is:
$$x \leq 1$$
 _____           _____          
      \         /
-------•-------•-------
       x_1      x_2

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x \leq 1$$
$$x \geq 3$$
Solving inequality on a graph