Given the inequality:
$$\tan{\left(x \right)} \geq -3$$
To solve this inequality, we must first solve the corresponding equation:
$$\tan{\left(x \right)} = -3$$
Solve:
Given the equation
$$\tan{\left(x \right)} = -3$$
- this is the simplest trigonometric equation
This equation is transformed to
$$x = \pi n + \operatorname{atan}{\left(-3 \right)}$$
Or
$$x = \pi n - \operatorname{atan}{\left(3 \right)}$$
, where n - is a integer
$$x_{1} = \pi n - \operatorname{atan}{\left(3 \right)}$$
$$x_{1} = \pi n - \operatorname{atan}{\left(3 \right)}$$
This roots
$$x_{1} = \pi n - \operatorname{atan}{\left(3 \right)}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\pi n - \operatorname{atan}{\left(3 \right)}\right) + - \frac{1}{10}$$
=
$$\pi n - \operatorname{atan}{\left(3 \right)} - \frac{1}{10}$$
substitute to the expression
$$\tan{\left(x \right)} \geq -3$$
$$\tan{\left(\pi n - \operatorname{atan}{\left(3 \right)} - \frac{1}{10} \right)} \geq -3$$
-tan(1/10 - pi*n + atan(3)) >= -3
but
-tan(1/10 - pi*n + atan(3)) < -3
Then
$$x \leq \pi n - \operatorname{atan}{\left(3 \right)}$$
no execute
the solution of our inequality is:
$$x \geq \pi n - \operatorname{atan}{\left(3 \right)}$$
_____
/
-------•-------
x1