Mister Exam

tg(x)>=-3 inequation

A inequation with variable

The solution

You have entered [src]
tan(x) >= -3
$$\tan{\left(x \right)} \geq -3$$
tan(x) >= -3
Detail solution
Given the inequality:
$$\tan{\left(x \right)} \geq -3$$
To solve this inequality, we must first solve the corresponding equation:
$$\tan{\left(x \right)} = -3$$
Solve:
Given the equation
$$\tan{\left(x \right)} = -3$$
- this is the simplest trigonometric equation
This equation is transformed to
$$x = \pi n + \operatorname{atan}{\left(-3 \right)}$$
Or
$$x = \pi n - \operatorname{atan}{\left(3 \right)}$$
, where n - is a integer
$$x_{1} = \pi n - \operatorname{atan}{\left(3 \right)}$$
$$x_{1} = \pi n - \operatorname{atan}{\left(3 \right)}$$
This roots
$$x_{1} = \pi n - \operatorname{atan}{\left(3 \right)}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\pi n - \operatorname{atan}{\left(3 \right)}\right) + - \frac{1}{10}$$
=
$$\pi n - \operatorname{atan}{\left(3 \right)} - \frac{1}{10}$$
substitute to the expression
$$\tan{\left(x \right)} \geq -3$$
$$\tan{\left(\pi n - \operatorname{atan}{\left(3 \right)} - \frac{1}{10} \right)} \geq -3$$
-tan(1/10 - pi*n + atan(3)) >= -3

but
-tan(1/10 - pi*n + atan(3)) < -3

Then
$$x \leq \pi n - \operatorname{atan}{\left(3 \right)}$$
no execute
the solution of our inequality is:
$$x \geq \pi n - \operatorname{atan}{\left(3 \right)}$$
         _____  
        /
-------•-------
       x1
Solving inequality on a graph
Rapid solution [src]
  /   /            pi\                                 \
Or|And|0 <= x, x < --|, And(x <= pi, pi - atan(3) <= x)|
  \   \            2 /                                 /
$$\left(0 \leq x \wedge x < \frac{\pi}{2}\right) \vee \left(x \leq \pi \wedge \pi - \operatorname{atan}{\left(3 \right)} \leq x\right)$$
((0 <= x)∧(x < pi/2))∨((x <= pi)∧(pi - atan(3) <= x))
Rapid solution 2 [src]
    pi                      
[0, --) U [pi - atan(3), pi]
    2                       
$$x\ in\ \left[0, \frac{\pi}{2}\right) \cup \left[\pi - \operatorname{atan}{\left(3 \right)}, \pi\right]$$
x in Union(Interval.Ropen(0, pi/2), Interval(pi - atan(3), pi))