Given the inequality:
$$\left(\left(x^{2} - 10 x\right) - 25\right) \left(\left(x^{2} - 10 x\right) + 17\right) \leq -41$$
To solve this inequality, we must first solve the corresponding equation:
$$\left(\left(x^{2} - 10 x\right) - 25\right) \left(\left(x^{2} - 10 x\right) + 17\right) = -41$$
Solve:
$$x_{1} = -2$$
$$x_{2} = 2$$
$$x_{3} = 8$$
$$x_{4} = 12$$
$$x_{1} = -2$$
$$x_{2} = 2$$
$$x_{3} = 8$$
$$x_{4} = 12$$
This roots
$$x_{1} = -2$$
$$x_{2} = 2$$
$$x_{3} = 8$$
$$x_{4} = 12$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$-2 + - \frac{1}{10}$$
=
$$- \frac{21}{10}$$
substitute to the expression
$$\left(\left(x^{2} - 10 x\right) - 25\right) \left(\left(x^{2} - 10 x\right) + 17\right) \leq -41$$
$$\left(-25 + \left(\left(- \frac{21}{10}\right)^{2} - \frac{\left(-21\right) 10}{10}\right)\right) \left(17 + \left(\left(- \frac{21}{10}\right)^{2} - \frac{\left(-21\right) 10}{10}\right)\right) \leq -41$$
173881
------ <= -41
10000
but
173881
------ >= -41
10000
Then
$$x \leq -2$$
no execute
one of the solutions of our inequality is:
$$x \geq -2 \wedge x \leq 2$$
_____ _____
/ \ / \
-------•-------•-------•-------•-------
x1 x2 x3 x4Other solutions will get with the changeover to the next point
etc.
The answer:
$$x \geq -2 \wedge x \leq 2$$
$$x \geq 8 \wedge x \leq 12$$