Given the inequality:
$$\left(- 2 x^{3} + 3 x\right) - 1 > 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\left(- 2 x^{3} + 3 x\right) - 1 = 0$$
Solve:
$$x_{1} = 1$$
$$x_{2} = - \frac{\sqrt{3}}{2} - \frac{1}{2}$$
$$x_{3} = - \frac{1}{2} + \frac{\sqrt{3}}{2}$$
$$x_{1} = 1$$
$$x_{2} = - \frac{\sqrt{3}}{2} - \frac{1}{2}$$
$$x_{3} = - \frac{1}{2} + \frac{\sqrt{3}}{2}$$
This roots
$$x_{2} = - \frac{\sqrt{3}}{2} - \frac{1}{2}$$
$$x_{3} = - \frac{1}{2} + \frac{\sqrt{3}}{2}$$
$$x_{1} = 1$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{2}$$
For example, let's take the point
$$x_{0} = x_{2} - \frac{1}{10}$$
=
$$\left(- \frac{\sqrt{3}}{2} - \frac{1}{2}\right) + - \frac{1}{10}$$
=
$$- \frac{\sqrt{3}}{2} - \frac{3}{5}$$
substitute to the expression
$$\left(- 2 x^{3} + 3 x\right) - 1 > 0$$
$$-1 + \left(3 \left(- \frac{\sqrt{3}}{2} - \frac{3}{5}\right) - 2 \left(- \frac{\sqrt{3}}{2} - \frac{3}{5}\right)^{3}\right) > 0$$
3
/ ___\ ___
14 | 3 \/ 3 | 3*\/ 3 > 0
- -- - 2*|- - - -----| - -------
5 \ 5 2 / 2 one of the solutions of our inequality is:
$$x < - \frac{\sqrt{3}}{2} - \frac{1}{2}$$
_____ _____
\ / \
-------ο-------ο-------ο-------
x2 x3 x1Other solutions will get with the changeover to the next point
etc.
The answer:
$$x < - \frac{\sqrt{3}}{2} - \frac{1}{2}$$
$$x > - \frac{1}{2} + \frac{\sqrt{3}}{2} \wedge x < 1$$