Mister Exam

Other calculators

x^3-8*x-9>=0 inequation

A inequation with variable

The solution

You have entered [src]
 3               
x  - 8*x - 9 >= 0
$$\left(x^{3} - 8 x\right) - 9 \geq 0$$
x^3 - 8*x - 9 >= 0
Detail solution
Given the inequality:
$$\left(x^{3} - 8 x\right) - 9 \geq 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\left(x^{3} - 8 x\right) - 9 = 0$$
Solve:
$$x_{1} = \left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{\sqrt{417}}{18} + \frac{9}{2}} + \frac{8}{3 \left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{\sqrt{417}}{18} + \frac{9}{2}}}$$
$$x_{2} = \frac{8}{3 \left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{\sqrt{417}}{18} + \frac{9}{2}}} + \left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{\sqrt{417}}{18} + \frac{9}{2}}$$
$$x_{3} = \frac{8}{3 \sqrt[3]{\frac{\sqrt{417}}{18} + \frac{9}{2}}} + \sqrt[3]{\frac{\sqrt{417}}{18} + \frac{9}{2}}$$
Exclude the complex solutions:
$$x_{1} = \frac{8}{3 \sqrt[3]{\frac{\sqrt{417}}{18} + \frac{9}{2}}} + \sqrt[3]{\frac{\sqrt{417}}{18} + \frac{9}{2}}$$
This roots
$$x_{1} = \frac{8}{3 \sqrt[3]{\frac{\sqrt{417}}{18} + \frac{9}{2}}} + \sqrt[3]{\frac{\sqrt{417}}{18} + \frac{9}{2}}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + \left(\frac{8}{3 \sqrt[3]{\frac{\sqrt{417}}{18} + \frac{9}{2}}} + \sqrt[3]{\frac{\sqrt{417}}{18} + \frac{9}{2}}\right)$$
=
$$- \frac{1}{10} + \frac{8}{3 \sqrt[3]{\frac{\sqrt{417}}{18} + \frac{9}{2}}} + \sqrt[3]{\frac{\sqrt{417}}{18} + \frac{9}{2}}$$
substitute to the expression
$$\left(x^{3} - 8 x\right) - 9 \geq 0$$
$$-9 + \left(- 8 \left(- \frac{1}{10} + \frac{8}{3 \sqrt[3]{\frac{\sqrt{417}}{18} + \frac{9}{2}}} + \sqrt[3]{\frac{\sqrt{417}}{18} + \frac{9}{2}}\right) + \left(- \frac{1}{10} + \frac{8}{3 \sqrt[3]{\frac{\sqrt{417}}{18} + \frac{9}{2}}} + \sqrt[3]{\frac{\sqrt{417}}{18} + \frac{9}{2}}\right)^{3}\right) \geq 0$$
                                                         3                                                   
       /            _____________                       \           _____________                            
       |           /       _____                        |          /       _____                             
  41   |  1       /  9   \/ 417              8          |         /  9   \/ 417              64              
- -- + |- -- + 3 /   - + -------  + --------------------|  - 8*3 /   - + -------  - --------------------     
  5    |  10   \/    2      18             _____________|      \/    2      18             _____________ >= 0
       |                                  /       _____ |                                 /       _____      
       |                                 /  9   \/ 417  |                                /  9   \/ 417       
       |                            3*3 /   - + ------- |                           3*3 /   - + -------      
       \                              \/    2      18   /                             \/    2      18        
     

but
                                                         3                                                  
       /            _____________                       \           _____________                           
       |           /       _____                        |          /       _____                            
  41   |  1       /  9   \/ 417              8          |         /  9   \/ 417              64             
- -- + |- -- + 3 /   - + -------  + --------------------|  - 8*3 /   - + -------  - --------------------    
  5    |  10   \/    2      18             _____________|      \/    2      18             _____________ < 0
       |                                  /       _____ |                                 /       _____     
       |                                 /  9   \/ 417  |                                /  9   \/ 417      
       |                            3*3 /   - + ------- |                           3*3 /   - + -------     
       \                              \/    2      18   /                             \/    2      18       
    

Then
$$x \leq \frac{8}{3 \sqrt[3]{\frac{\sqrt{417}}{18} + \frac{9}{2}}} + \sqrt[3]{\frac{\sqrt{417}}{18} + \frac{9}{2}}$$
no execute
the solution of our inequality is:
$$x \geq \frac{8}{3 \sqrt[3]{\frac{\sqrt{417}}{18} + \frac{9}{2}}} + \sqrt[3]{\frac{\sqrt{417}}{18} + \frac{9}{2}}$$
         _____  
        /
-------•-------
       x1
Solving inequality on a graph
Rapid solution 2 [src]
        / 3             \     
[CRootOf\x  - 8*x - 9, 0/, oo)
$$x\ in\ \left[\operatorname{CRootOf} {\left(x^{3} - 8 x - 9, 0\right)}, \infty\right)$$
x in Interval(CRootOf(x^3 - 8*x - 9, 0), oo)
Rapid solution [src]
   /       / 3             \             \
And\CRootOf\x  - 8*x - 9, 0/ <= x, x < oo/
$$\operatorname{CRootOf} {\left(x^{3} - 8 x - 9, 0\right)} \leq x \wedge x < \infty$$
(x < oo)∧(CRootOf(x^3 - 8*x - 9, 0) <= x)