Mister Exam

ctg-1<0 inequation

A inequation with variable

The solution

You have entered [src]
cot(x) - 1 < 0
$$\cot{\left(x \right)} - 1 < 0$$
cot(x) - 1 < 0
Detail solution
Given the inequality:
$$\cot{\left(x \right)} - 1 < 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\cot{\left(x \right)} - 1 = 0$$
Solve:
Given the equation
$$\cot{\left(x \right)} - 1 = 0$$
transform
$$\cot{\left(x \right)} - 1 = 0$$
$$\cot{\left(x \right)} - 1 = 0$$
Do replacement
$$w = \cot{\left(x \right)}$$
Move free summands (without w)
from left part to right part, we given:
$$w = 1$$
We get the answer: w = 1
do backward replacement
$$\cot{\left(x \right)} = w$$
substitute w:
$$x_{1} = \frac{\pi}{4}$$
$$x_{1} = \frac{\pi}{4}$$
This roots
$$x_{1} = \frac{\pi}{4}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + \frac{\pi}{4}$$
=
$$- \frac{1}{10} + \frac{\pi}{4}$$
substitute to the expression
$$\cot{\left(x \right)} - 1 < 0$$
$$-1 + \cot{\left(- \frac{1}{10} + \frac{\pi}{4} \right)} < 0$$
        /1    pi\    
-1 + tan|-- + --| < 0
        \10   4 /    

but
        /1    pi\    
-1 + tan|-- + --| > 0
        \10   4 /    

Then
$$x < \frac{\pi}{4}$$
no execute
the solution of our inequality is:
$$x > \frac{\pi}{4}$$
         _____  
        /
-------ο-------
       x1
Rapid solution [src]
   /pi            \
And|-- < x, x < pi|
   \4             /
$$\frac{\pi}{4} < x \wedge x < \pi$$
(x < pi)∧(pi/4 < x)
Rapid solution 2 [src]
 pi     
(--, pi)
 4      
$$x\ in\ \left(\frac{\pi}{4}, \pi\right)$$
x in Interval.open(pi/4, pi)