Given the inequality:
$$\frac{\left(7 - x\right) \left(x + 1\right)}{x + 8} \left(x - 5\right) < 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\frac{\left(7 - x\right) \left(x + 1\right)}{x + 8} \left(x - 5\right) = 0$$
Solve:
$$x_{1} = -1$$
$$x_{2} = 5$$
$$x_{3} = 7$$
$$x_{1} = -1$$
$$x_{2} = 5$$
$$x_{3} = 7$$
This roots
$$x_{1} = -1$$
$$x_{2} = 5$$
$$x_{3} = 7$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$-1 + - \frac{1}{10}$$
=
$$- \frac{11}{10}$$
substitute to the expression
$$\frac{\left(7 - x\right) \left(x + 1\right)}{x + 8} \left(x - 5\right) < 0$$
$$\frac{\left(- \frac{11}{10} + 1\right) \left(7 - - \frac{11}{10}\right)}{- \frac{11}{10} + 8} \left(-5 + - \frac{11}{10}\right) < 0$$
1647
---- < 0
2300
but
1647
---- > 0
2300
Then
$$x < -1$$
no execute
one of the solutions of our inequality is:
$$x > -1 \wedge x < 5$$
_____ _____
/ \ /
-------ο-------ο-------ο-------
x1 x2 x3Other solutions will get with the changeover to the next point
etc.
The answer:
$$x > -1 \wedge x < 5$$
$$x > 7$$