Mister Exam

Other calculators

(x^2)-9*x+20<0 inequation

A inequation with variable

The solution

You have entered [src]
 2               
x  - 9*x + 20 < 0
$$\left(x^{2} - 9 x\right) + 20 < 0$$
x^2 - 9*x + 20 < 0
Detail solution
Given the inequality:
$$\left(x^{2} - 9 x\right) + 20 < 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\left(x^{2} - 9 x\right) + 20 = 0$$
Solve:
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = -9$$
$$c = 20$$
, then
D = b^2 - 4 * a * c = 

(-9)^2 - 4 * (1) * (20) = 1

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = 5$$
$$x_{2} = 4$$
$$x_{1} = 5$$
$$x_{2} = 4$$
$$x_{1} = 5$$
$$x_{2} = 4$$
This roots
$$x_{2} = 4$$
$$x_{1} = 5$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{2}$$
For example, let's take the point
$$x_{0} = x_{2} - \frac{1}{10}$$
=
$$- \frac{1}{10} + 4$$
=
$$\frac{39}{10}$$
substitute to the expression
$$\left(x^{2} - 9 x\right) + 20 < 0$$
$$\left(- \frac{9 \cdot 39}{10} + \left(\frac{39}{10}\right)^{2}\right) + 20 < 0$$
 11    
--- < 0
100    

but
 11    
--- > 0
100    

Then
$$x < 4$$
no execute
one of the solutions of our inequality is:
$$x > 4 \wedge x < 5$$
         _____  
        /     \  
-------ο-------ο-------
       x2      x1
Solving inequality on a graph
Rapid solution [src]
And(4 < x, x < 5)
$$4 < x \wedge x < 5$$
(4 < x)∧(x < 5)
Rapid solution 2 [src]
(4, 5)
$$x\ in\ \left(4, 5\right)$$
x in Interval.open(4, 5)