Mister Exam

Other calculators

  • How to use it?

  • Inequation:
  • 1/(1-x^2)>0
  • (2x+3)(2-x)>3
  • 2^(x^2)*13^(x-1)>=2
  • x^2-4*x<=-x+20-x^2
  • Identical expressions

  • two ^(x^ two)* thirteen ^(x- one)>= two
  • 2 to the power of (x squared ) multiply by 13 to the power of (x minus 1) greater than or equal to 2
  • two to the power of (x to the power of two) multiply by thirteen to the power of (x minus one) greater than or equal to two
  • 2(x2)*13(x-1)>=2
  • 2x2*13x-1>=2
  • 2^(x²)*13^(x-1)>=2
  • 2 to the power of (x to the power of 2)*13 to the power of (x-1)>=2
  • 2^(x^2)13^(x-1)>=2
  • 2(x2)13(x-1)>=2
  • 2x213x-1>=2
  • 2^x^213^x-1>=2
  • Similar expressions

  • 2^(x^2)*13^(x+1)>=2

2^(x^2)*13^(x-1)>=2 inequation

A inequation with variable

The solution

You have entered [src]
 / 2\             
 \x /   x - 1     
2    *13      >= 2
$$13^{x - 1} \cdot 2^{x^{2}} \geq 2$$
13^(x - 1)*2^(x^2) >= 2
Detail solution
Given the inequality:
$$13^{x - 1} \cdot 2^{x^{2}} \geq 2$$
To solve this inequality, we must first solve the corresponding equation:
$$13^{x - 1} \cdot 2^{x^{2}} = 2$$
Solve:
$$x_{1} = 1$$
$$x_{2} = - \frac{\log{\left(13 \right)}}{\log{\left(2 \right)}} - 1$$
$$x_{1} = 1$$
$$x_{2} = - \frac{\log{\left(13 \right)}}{\log{\left(2 \right)}} - 1$$
This roots
$$x_{2} = - \frac{\log{\left(13 \right)}}{\log{\left(2 \right)}} - 1$$
$$x_{1} = 1$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{2}$$
For example, let's take the point
$$x_{0} = x_{2} - \frac{1}{10}$$
=
$$\left(- \frac{\log{\left(13 \right)}}{\log{\left(2 \right)}} - 1\right) + - \frac{1}{10}$$
=
$$- \frac{\log{\left(13 \right)}}{\log{\left(2 \right)}} - \frac{11}{10}$$
substitute to the expression
$$13^{x - 1} \cdot 2^{x^{2}} \geq 2$$
$$13^{\left(- \frac{\log{\left(13 \right)}}{\log{\left(2 \right)}} - \frac{11}{10}\right) - 1} \cdot 2^{\left(- \frac{\log{\left(13 \right)}}{\log{\left(2 \right)}} - \frac{11}{10}\right)^{2}} \geq 2$$
 /                2\                      
 |/  11   log(13)\ |     21   log(13)     
 ||- -- - -------| |   - -- - ------- >= 2
 \\  10    log(2)/ /     10    log(2)     
2                   *13                   

one of the solutions of our inequality is:
$$x \leq - \frac{\log{\left(13 \right)}}{\log{\left(2 \right)}} - 1$$
 _____           _____          
      \         /
-------•-------•-------
       x2      x1

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x \leq - \frac{\log{\left(13 \right)}}{\log{\left(2 \right)}} - 1$$
$$x \geq 1$$
Solving inequality on a graph