Mister Exam

(2x+3)(2-x)>3 inequation

A inequation with variable

The solution

You have entered [src]
(2*x + 3)*(2 - x) > 3
(2x)(2x+3)>3\left(2 - x\right) \left(2 x + 3\right) > 3
(2 - x)*(2*x + 3) > 3
Detail solution
Given the inequality:
(2x)(2x+3)>3\left(2 - x\right) \left(2 x + 3\right) > 3
To solve this inequality, we must first solve the corresponding equation:
(2x)(2x+3)=3\left(2 - x\right) \left(2 x + 3\right) = 3
Solve:
Move right part of the equation to
left part with negative sign.

The equation is transformed from
(2x)(2x+3)=3\left(2 - x\right) \left(2 x + 3\right) = 3
to
(2x)(2x+3)3=0\left(2 - x\right) \left(2 x + 3\right) - 3 = 0
Expand the expression in the equation
(2x)(2x+3)3=0\left(2 - x\right) \left(2 x + 3\right) - 3 = 0
We get the quadratic equation
2x2+x+3=0- 2 x^{2} + x + 3 = 0
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
where D = b^2 - 4*a*c - it is the discriminant.
Because
a=2a = -2
b=1b = 1
c=3c = 3
, then
D = b^2 - 4 * a * c = 

(1)^2 - 4 * (-2) * (3) = 25

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
x1=1x_{1} = -1
x2=32x_{2} = \frac{3}{2}
x1=1x_{1} = -1
x2=32x_{2} = \frac{3}{2}
x1=1x_{1} = -1
x2=32x_{2} = \frac{3}{2}
This roots
x1=1x_{1} = -1
x2=32x_{2} = \frac{3}{2}
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0<x1x_{0} < x_{1}
For example, let's take the point
x0=x1110x_{0} = x_{1} - \frac{1}{10}
=
1+110-1 + - \frac{1}{10}
=
1110- \frac{11}{10}
substitute to the expression
(2x)(2x+3)>3\left(2 - x\right) \left(2 x + 3\right) > 3
(21110)((11)210+3)>3\left(2 - - \frac{11}{10}\right) \left(\frac{\left(-11\right) 2}{10} + 3\right) > 3
62    
-- > 3
25    

Then
x<1x < -1
no execute
one of the solutions of our inequality is:
x>1x<32x > -1 \wedge x < \frac{3}{2}
         _____  
        /     \  
-------ο-------ο-------
       x1      x2
Solving inequality on a graph
0123456-5-4-3-2-1-100100
Rapid solution [src]
And(-1 < x, x < 3/2)
1<xx<32-1 < x \wedge x < \frac{3}{2}
(-1 < x)∧(x < 3/2)
Rapid solution 2 [src]
(-1, 3/2)
x in (1,32)x\ in\ \left(-1, \frac{3}{2}\right)
x in Interval.open(-1, 3/2)