Mister Exam

Other calculators

(3/(x+2))-(2/(x-3))≥0 inequation

A inequation with variable

The solution

You have entered [src]
  3       2       
----- - ----- >= 0
x + 2   x - 3     
3x+22x30\frac{3}{x + 2} - \frac{2}{x - 3} \geq 0
3/(x + 2) - 2/(x - 3) >= 0
Detail solution
Given the inequality:
3x+22x30\frac{3}{x + 2} - \frac{2}{x - 3} \geq 0
To solve this inequality, we must first solve the corresponding equation:
3x+22x3=0\frac{3}{x + 2} - \frac{2}{x - 3} = 0
Solve:
Given the equation:
3x+22x3=0\frac{3}{x + 2} - \frac{2}{x - 3} = 0
Use proportions rule:
From a1/b1 = a2/b2 should a1*b2 = a2*b1,
In this case
a1 = 3

b1 = 2 + x

a2 = 2

b2 = -3 + x

so we get the equation
3(x3)=2(x+2)3 \left(x - 3\right) = 2 \left(x + 2\right)
3x9=2x+43 x - 9 = 2 x + 4
Move free summands (without x)
from left part to right part, we given:
3x=2x+133 x = 2 x + 13
Move the summands with the unknown x
from the right part to the left part:
x=13x = 13
We get the answer: x = 13
x1=13x_{1} = 13
x1=13x_{1} = 13
This roots
x1=13x_{1} = 13
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0x1x_{0} \leq x_{1}
For example, let's take the point
x0=x1110x_{0} = x_{1} - \frac{1}{10}
=
110+13- \frac{1}{10} + 13
=
12910\frac{129}{10}
substitute to the expression
3x+22x30\frac{3}{x + 2} - \frac{2}{x - 3} \geq 0
23+12910+32+129100- \frac{2}{-3 + \frac{129}{10}} + \frac{3}{2 + \frac{129}{10}} \geq 0
 -10      
----- >= 0
14751     

but
 -10     
----- < 0
14751    

Then
x13x \leq 13
no execute
the solution of our inequality is:
x13x \geq 13
         _____  
        /
-------•-------
       x1
Solving inequality on a graph
0-50-40-30-20-101020304050-100005000
Rapid solution [src]
Or(And(-2 < x, x < 3), 13 <= x)
(2<xx<3)13x\left(-2 < x \wedge x < 3\right) \vee 13 \leq x
(13 <= x)∨((-2 < x)∧(x < 3))
Rapid solution 2 [src]
(-2, 3) U [13, oo)
x in (2,3)[13,)x\ in\ \left(-2, 3\right) \cup \left[13, \infty\right)
x in Union(Interval.open(-2, 3), Interval(13, oo))