Mister Exam

Other calculators

  • How to use it?

  • Inequation:
  • -4x^2+20x>25
  • y^2-4*x+8>0
  • (4-x)√4+3x-x²≤0
  • (x+3)/5<(9-x)/3
  • Canonical form:
  • =0
  • Identical expressions

  • two *cos(x)+sqrt(three)>= zero
  • 2 multiply by co sinus of e of (x) plus square root of (3) greater than or equal to 0
  • two multiply by co sinus of e of (x) plus square root of (three) greater than or equal to zero
  • 2*cos(x)+√(3)>=0
  • 2cos(x)+sqrt(3)>=0
  • 2cosx+sqrt3>=0
  • 2*cos(x)+sqrt(3)>=O
  • Similar expressions

  • 2*cos(x)-sqrt(3)>=0
  • 2*cosx+sqrt(3)>=0

2*cos(x)+sqrt(3)>=0 inequation

A inequation with variable

The solution

You have entered [src]
             ___     
2*cos(x) + \/ 3  >= 0
$$2 \cos{\left(x \right)} + \sqrt{3} \geq 0$$
2*cos(x) + sqrt(3) >= 0
Detail solution
Given the inequality:
$$2 \cos{\left(x \right)} + \sqrt{3} \geq 0$$
To solve this inequality, we must first solve the corresponding equation:
$$2 \cos{\left(x \right)} + \sqrt{3} = 0$$
Solve:
Given the equation
$$2 \cos{\left(x \right)} + \sqrt{3} = 0$$
- this is the simplest trigonometric equation
Move sqrt(3) to right part of the equation

with the change of sign in sqrt(3)

We get:
$$2 \cos{\left(x \right)} = - \sqrt{3}$$
Divide both parts of the equation by 2

The equation is transformed to
$$\cos{\left(x \right)} = - \frac{\sqrt{3}}{2}$$
This equation is transformed to
$$x = \pi n + \operatorname{acos}{\left(- \frac{\sqrt{3}}{2} \right)}$$
$$x = \pi n - \pi + \operatorname{acos}{\left(- \frac{\sqrt{3}}{2} \right)}$$
Or
$$x = \pi n + \frac{5 \pi}{6}$$
$$x = \pi n - \frac{\pi}{6}$$
, where n - is a integer
$$x_{1} = \pi n + \frac{5 \pi}{6}$$
$$x_{2} = \pi n - \frac{\pi}{6}$$
$$x_{1} = \pi n + \frac{5 \pi}{6}$$
$$x_{2} = \pi n - \frac{\pi}{6}$$
This roots
$$x_{1} = \pi n + \frac{5 \pi}{6}$$
$$x_{2} = \pi n - \frac{\pi}{6}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\pi n + \frac{5 \pi}{6}\right) + - \frac{1}{10}$$
=
$$\pi n - \frac{1}{10} + \frac{5 \pi}{6}$$
substitute to the expression
$$2 \cos{\left(x \right)} + \sqrt{3} \geq 0$$
$$2 \cos{\left(\pi n - \frac{1}{10} + \frac{5 \pi}{6} \right)} + \sqrt{3} \geq 0$$
  ___        /  1    pi       \     
\/ 3  - 2*sin|- -- + -- + pi*n| >= 0
             \  10   3        /     

one of the solutions of our inequality is:
$$x \leq \pi n + \frac{5 \pi}{6}$$
 _____           _____          
      \         /
-------•-------•-------
       x1      x2

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x \leq \pi n + \frac{5 \pi}{6}$$
$$x \geq \pi n - \frac{\pi}{6}$$
Solving inequality on a graph
Rapid solution [src]
  /   /             5*pi\     /7*pi                \\
Or|And|0 <= x, x <= ----|, And|---- <= x, x <= 2*pi||
  \   \              6  /     \ 6                  //
$$\left(0 \leq x \wedge x \leq \frac{5 \pi}{6}\right) \vee \left(\frac{7 \pi}{6} \leq x \wedge x \leq 2 \pi\right)$$
((0 <= x)∧(x <= 5*pi/6))∨((7*pi/6 <= x)∧(x <= 2*pi))
Rapid solution 2 [src]
    5*pi     7*pi       
[0, ----] U [----, 2*pi]
     6        6         
$$x\ in\ \left[0, \frac{5 \pi}{6}\right] \cup \left[\frac{7 \pi}{6}, 2 \pi\right]$$
x in Union(Interval(0, 5*pi/6), Interval(7*pi/6, 2*pi))