Mister Exam

Other calculators


((2-x^2)*(x-3)^3)/((x+1)*(x^2-3x-4))>=0

((2-x^2)*(x-3)^3)/((x+1)*(x^2-3x-4))>=0 inequation

A inequation with variable

The solution

You have entered [src]
  /     2\        3        
  \2 - x /*(x - 3)         
---------------------- >= 0
        / 2          \     
(x + 1)*\x  - 3*x - 4/     
$$\frac{\left(2 - x^{2}\right) \left(x - 3\right)^{3}}{\left(x + 1\right) \left(x^{2} - 3 x - 4\right)} \geq 0$$
(2 - x^2)*(x - 1*3)^3/(((x + 1)*(x^2 - 3*x - 1*4))) >= 0
Detail solution
Given the inequality:
$$\frac{\left(2 - x^{2}\right) \left(x - 3\right)^{3}}{\left(x + 1\right) \left(x^{2} - 3 x - 4\right)} \geq 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\frac{\left(2 - x^{2}\right) \left(x - 3\right)^{3}}{\left(x + 1\right) \left(x^{2} - 3 x - 4\right)} = 0$$
Solve:
$$x_{1} = 3$$
$$x_{2} = - \sqrt{2}$$
$$x_{3} = \sqrt{2}$$
$$x_{1} = 3$$
$$x_{2} = - \sqrt{2}$$
$$x_{3} = \sqrt{2}$$
This roots
$$x_{2} = - \sqrt{2}$$
$$x_{3} = \sqrt{2}$$
$$x_{1} = 3$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{2}$$
For example, let's take the point
$$x_{0} = x_{2} - \frac{1}{10}$$
=
$$- \sqrt{2} - \frac{1}{10}$$
=
$$- \sqrt{2} - \frac{1}{10}$$
substitute to the expression
$$\frac{\left(2 - x^{2}\right) \left(x - 3\right)^{3}}{\left(x + 1\right) \left(x^{2} - 3 x - 4\right)} \geq 0$$
$$\frac{\left(2 - \left(- \sqrt{2} - \frac{1}{10}\right)^{2}\right) \left(\left(-1\right) 3 - \left(\frac{1}{10} + \sqrt{2}\right)\right)^{3}}{\left(\left(- \sqrt{2} - \frac{1}{10}\right) + 1\right) \left(\left(-1\right) 4 + \left(- \sqrt{2} - \frac{1}{10}\right)^{2} - 3 \left(- \sqrt{2} - \frac{1}{10}\right)\right)} \geq 0$$
                   3 /                  2\          
     /  31     ___\  |    /  1      ___\ |          
     |- -- - \/ 2 | *|2 - |- -- - \/ 2 | |          
     \  10        /  \    \  10        / /          
----------------------------------------------- >= 0
             /                     2          \     
/9      ___\ |  37   /  1      ___\        ___|     
|-- - \/ 2 |*|- -- + |- -- - \/ 2 |  + 3*\/ 2 |     
\10        / \  10   \  10        /           /     

but
                   3 /                  2\         
     /  31     ___\  |    /  1      ___\ |         
     |- -- - \/ 2 | *|2 - |- -- - \/ 2 | |         
     \  10        /  \    \  10        / /         
----------------------------------------------- < 0
             /                     2          \    
/9      ___\ |  37   /  1      ___\        ___|    
|-- - \/ 2 |*|- -- + |- -- - \/ 2 |  + 3*\/ 2 |    
\10        / \  10   \  10        /           /    

Then
$$x \leq - \sqrt{2}$$
no execute
one of the solutions of our inequality is:
$$x \geq - \sqrt{2} \wedge x \leq \sqrt{2}$$
         _____           _____  
        /     \         /
-------•-------•-------•-------
       x_2      x_3      x_1

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x \geq - \sqrt{2} \wedge x \leq \sqrt{2}$$
$$x \geq 3$$
Solving inequality on a graph
Rapid solution [src]
  /                       /       ___        \     /   ___             \\
Or\And(3 <= x, x < 4), And\x <= \/ 2 , -1 < x/, And\-\/ 2  <= x, x < -1//
$$\left(3 \leq x \wedge x < 4\right) \vee \left(x \leq \sqrt{2} \wedge -1 < x\right) \vee \left(- \sqrt{2} \leq x \wedge x < -1\right)$$
((3 <= x)∧(x < 4))∨((-1 < x)∧(x <= sqrt(2)))∨((x < -1)∧(-sqrt(2) <= x))
Rapid solution 2 [src]
    ___               ___          
[-\/ 2 , -1) U (-1, \/ 2 ] U [3, 4)
$$x\ in\ \left[- \sqrt{2}, -1\right) \cup \left(-1, \sqrt{2}\right] \cup \left[3, 4\right)$$
x in Union(Interval.Lopen(-1, sqrt(2)), Interval.Ropen(3, 4), Interval.Ropen(-sqrt(2), -1))
The graph
((2-x^2)*(x-3)^3)/((x+1)*(x^2-3x-4))>=0 inequation