Mister Exam

Other calculators

  • How to use it?

  • Inequation:
  • 7-9x>3
  • 1+8x<9
  • 2x-1:5-x>_0
  • 1/16^9-x<1/3
  • Identical expressions

  • two cos((𝑥/ three)+2)≥ one
  • 2 co sinus of e of ((𝑥 divide by 3) plus 2)≥1
  • two co sinus of e of ((𝑥 divide by three) plus 2)≥ one
  • 2cos𝑥/3+2≥1
  • 2cos((𝑥 divide by 3)+2)≥1
  • Similar expressions

  • 2cos((𝑥/3)-2)≥1

2cos((𝑥/3)+2)≥1 inequation

A inequation with variable

The solution

You have entered [src]
     /x    \     
2*cos|- + 2| >= 1
     \3    /     
$$2 \cos{\left(\frac{x}{3} + 2 \right)} \geq 1$$
2*cos(x/3 + 2) >= 1
Detail solution
Given the inequality:
$$2 \cos{\left(\frac{x}{3} + 2 \right)} \geq 1$$
To solve this inequality, we must first solve the corresponding equation:
$$2 \cos{\left(\frac{x}{3} + 2 \right)} = 1$$
Solve:
Given the equation
$$2 \cos{\left(\frac{x}{3} + 2 \right)} = 1$$
- this is the simplest trigonometric equation
Divide both parts of the equation by 2

The equation is transformed to
$$\cos{\left(\frac{x}{3} + 2 \right)} = \frac{1}{2}$$
This equation is transformed to
$$\frac{x}{3} + 2 = \pi n + \operatorname{acos}{\left(\frac{1}{2} \right)}$$
$$\frac{x}{3} + 2 = \pi n - \pi + \operatorname{acos}{\left(\frac{1}{2} \right)}$$
Or
$$\frac{x}{3} + 2 = \pi n + \frac{\pi}{3}$$
$$\frac{x}{3} + 2 = \pi n - \frac{2 \pi}{3}$$
, where n - is a integer
Move
$$2$$
to right part of the equation
with the opposite sign, in total:
$$\frac{x}{3} = \pi n - 2 + \frac{\pi}{3}$$
$$\frac{x}{3} = \pi n - \frac{2 \pi}{3} - 2$$
Divide both parts of the equation by
$$\frac{1}{3}$$
$$x_{1} = 3 \pi n - 6 + \pi$$
$$x_{2} = 3 \pi n - 2 \pi - 6$$
$$x_{1} = 3 \pi n - 6 + \pi$$
$$x_{2} = 3 \pi n - 2 \pi - 6$$
This roots
$$x_{1} = 3 \pi n - 6 + \pi$$
$$x_{2} = 3 \pi n - 2 \pi - 6$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(3 \pi n - 6 + \pi\right) + - \frac{1}{10}$$
=
$$3 \pi n - \frac{61}{10} + \pi$$
substitute to the expression
$$2 \cos{\left(\frac{x}{3} + 2 \right)} \geq 1$$
$$2 \cos{\left(\frac{3 \pi n - \frac{61}{10} + \pi}{3} + 2 \right)} \geq 1$$
     /  1    pi       \     
2*cos|- -- + -- + pi*n| >= 1
     \  30   3        /     

but
     /  1    pi       \    
2*cos|- -- + -- + pi*n| < 1
     \  30   3        /    

Then
$$x \leq 3 \pi n - 6 + \pi$$
no execute
one of the solutions of our inequality is:
$$x \geq 3 \pi n - 6 + \pi \wedge x \leq 3 \pi n - 2 \pi - 6$$
         _____  
        /     \  
-------•-------•-------
       x1      x2
Solving inequality on a graph
Rapid solution [src]
   /             /                ___ /       2   \\                 /                ___ /       2   \\            \
   |             |  4*tan(1)    \/ 3 *\1 + tan (1)/|                 |  4*tan(1)    \/ 3 *\1 + tan (1)/|            |
And|x <= - 6*atan|----------- - -------------------| + 6*pi, - 6*atan|----------- + -------------------| + 6*pi <= x|
   |             |       2                 2       |                 |       2                 2       |            |
   \             \3 - tan (1)       3 - tan (1)    /                 \3 - tan (1)       3 - tan (1)    /            /
$$x \leq - 6 \operatorname{atan}{\left(- \frac{\sqrt{3} \left(1 + \tan^{2}{\left(1 \right)}\right)}{3 - \tan^{2}{\left(1 \right)}} + \frac{4 \tan{\left(1 \right)}}{3 - \tan^{2}{\left(1 \right)}} \right)} + 6 \pi \wedge - 6 \operatorname{atan}{\left(\frac{\sqrt{3} \left(1 + \tan^{2}{\left(1 \right)}\right)}{3 - \tan^{2}{\left(1 \right)}} + \frac{4 \tan{\left(1 \right)}}{3 - \tan^{2}{\left(1 \right)}} \right)} + 6 \pi \leq x$$
(-6*atan(4*tan(1)/(3 - tan(1)^2) + sqrt(3)*(1 + tan(1)^2)/(3 - tan(1)^2)) + 6*pi <= x)∧(x <= -6*atan(4*tan(1)/(3 - tan(1)^2) - sqrt(3)*(1 + tan(1)^2)/(3 - tan(1)^2)) + 6*pi)
Rapid solution 2 [src]
         /                ___ /       2   \\                 /                ___ /       2   \\        
         |  4*tan(1)    \/ 3 *\1 + tan (1)/|                 |  4*tan(1)    \/ 3 *\1 + tan (1)/|        
[- 6*atan|----------- + -------------------| + 6*pi, - 6*atan|----------- - -------------------| + 6*pi]
         |       2                 2       |                 |       2                 2       |        
         \3 - tan (1)       3 - tan (1)    /                 \3 - tan (1)       3 - tan (1)    /        
$$x\ in\ \left[- 6 \operatorname{atan}{\left(\frac{\sqrt{3} \left(1 + \tan^{2}{\left(1 \right)}\right)}{3 - \tan^{2}{\left(1 \right)}} + \frac{4 \tan{\left(1 \right)}}{3 - \tan^{2}{\left(1 \right)}} \right)} + 6 \pi, - 6 \operatorname{atan}{\left(- \frac{\sqrt{3} \left(1 + \tan^{2}{\left(1 \right)}\right)}{3 - \tan^{2}{\left(1 \right)}} + \frac{4 \tan{\left(1 \right)}}{3 - \tan^{2}{\left(1 \right)}} \right)} + 6 \pi\right]$$
x in Interval(-6*atan(sqrt(3)*(1 + tan(1)^2)/(3 - tan(1)^2) + 4*tan(1)/(3 - tan(1)^2)) + 6*pi, -6*atan(-sqrt(3)*(1 + tan(1)^2)/(3 - tan(1)^2) + 4*tan(1)/(3 - tan(1)^2)) + 6*pi)