Mister Exam

Other calculators

(3x-2):(3-x)=<2 inequation

A inequation with variable

The solution

You have entered [src]
3*x - 2     
------- <= 2
 3 - x      
$$\frac{3 x - 2}{3 - x} \leq 2$$
(3*x - 2)/(3 - x) <= 2
Detail solution
Given the inequality:
$$\frac{3 x - 2}{3 - x} \leq 2$$
To solve this inequality, we must first solve the corresponding equation:
$$\frac{3 x - 2}{3 - x} = 2$$
Solve:
Given the equation:
$$\frac{3 x - 2}{3 - x} = 2$$
Multiply the equation sides by the denominator 3 - x
we get:
$$\frac{\left(2 - 3 x\right) \left(3 - x\right)}{x - 3} = 6 - 2 x$$
Expand brackets in the left part
2+3*x3+x-3+x = 6 - 2*x

Looking for similar summands in the left part:
(2 - 3*x)*(3 - x)/(-3 + x) = 6 - 2*x

Move free summands (without x)
from left part to right part, we given:
$$\frac{\left(2 - 3 x\right) \left(3 - x\right)}{x - 3} + 3 = 9 - 2 x$$
Move the summands with the unknown x
from the right part to the left part:
$$2 x + \frac{\left(2 - 3 x\right) \left(3 - x\right)}{x - 3} + 3 = 9$$
Divide both parts of the equation by (3 + 2*x + (2 - 3*x)*(3 - x)/(-3 + x))/x
x = 9 / ((3 + 2*x + (2 - 3*x)*(3 - x)/(-3 + x))/x)

$$x_{1} = \frac{8}{5}$$
$$x_{1} = \frac{8}{5}$$
This roots
$$x_{1} = \frac{8}{5}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + \frac{8}{5}$$
=
$$\frac{3}{2}$$
substitute to the expression
$$\frac{3 x - 2}{3 - x} \leq 2$$
$$\frac{-2 + \frac{3 \cdot 3}{2}}{3 - \frac{3}{2}} \leq 2$$
5/3 <= 2

the solution of our inequality is:
$$x \leq \frac{8}{5}$$
 _____          
      \    
-------•-------
       x1
Solving inequality on a graph
Rapid solution 2 [src]
(-oo, 8/5] U (3, oo)
$$x\ in\ \left(-\infty, \frac{8}{5}\right] \cup \left(3, \infty\right)$$
x in Union(Interval(-oo, 8/5), Interval.open(3, oo))
Rapid solution [src]
Or(And(x <= 8/5, -oo < x), And(3 < x, x < oo))
$$\left(x \leq \frac{8}{5} \wedge -\infty < x\right) \vee \left(3 < x \wedge x < \infty\right)$$
((x <= 8/5)∧(-oo < x))∨((3 < x)∧(x < oo))