Mister Exam

Other calculators

tgx>=sqrt(3)/3 inequation

A inequation with variable

The solution

You have entered [src]
            ___
          \/ 3 
tan(x) >= -----
            3  
$$\tan{\left(x \right)} \geq \frac{\sqrt{3}}{3}$$
tan(x) >= sqrt(3)/3
Detail solution
Given the inequality:
$$\tan{\left(x \right)} \geq \frac{\sqrt{3}}{3}$$
To solve this inequality, we must first solve the corresponding equation:
$$\tan{\left(x \right)} = \frac{\sqrt{3}}{3}$$
Solve:
Given the equation
$$\tan{\left(x \right)} = \frac{\sqrt{3}}{3}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$x = \pi n + \operatorname{atan}{\left(\frac{\sqrt{3}}{3} \right)}$$
Or
$$x = \pi n + \frac{\pi}{6}$$
, where n - is a integer
$$x_{1} = \pi n + \frac{\pi}{6}$$
$$x_{1} = \pi n + \frac{\pi}{6}$$
This roots
$$x_{1} = \pi n + \frac{\pi}{6}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\pi n + \frac{\pi}{6}\right) + - \frac{1}{10}$$
=
$$\pi n - \frac{1}{10} + \frac{\pi}{6}$$
substitute to the expression
$$\tan{\left(x \right)} \geq \frac{\sqrt{3}}{3}$$
$$\tan{\left(\pi n - \frac{1}{10} + \frac{\pi}{6} \right)} \geq \frac{\sqrt{3}}{3}$$
                           ___
   /  1    pi       \    \/ 3 
tan|- -- + -- + pi*n| >= -----
   \  10   6        /      3  
                         

but
                          ___
   /  1    pi       \   \/ 3 
tan|- -- + -- + pi*n| < -----
   \  10   6        /     3  
                        

Then
$$x \leq \pi n + \frac{\pi}{6}$$
no execute
the solution of our inequality is:
$$x \geq \pi n + \frac{\pi}{6}$$
         _____  
        /
-------•-------
       x1
Solving inequality on a graph
Rapid solution 2 [src]
 pi  pi 
[--, --)
 6   2  
$$x\ in\ \left[\frac{\pi}{6}, \frac{\pi}{2}\right)$$
x in Interval.Ropen(pi/6, pi/2)
Rapid solution [src]
   /pi           pi\
And|-- <= x, x < --|
   \6            2 /
$$\frac{\pi}{6} \leq x \wedge x < \frac{\pi}{2}$$
(pi/6 <= x)∧(x < pi/2)