Given the inequality:
$$\tan{\left(x \right)} \geq \frac{1}{\sqrt{3}}$$
To solve this inequality, we must first solve the corresponding equation:
$$\tan{\left(x \right)} = \frac{1}{\sqrt{3}}$$
Solve:
Given the equation
$$\tan{\left(x \right)} = \frac{1}{\sqrt{3}}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$x = \pi n + \operatorname{atan}{\left(\frac{\sqrt{3}}{3} \right)}$$
Or
$$x = \pi n + \frac{\pi}{6}$$
, where n - is a integer
$$x_{1} = \pi n + \frac{\pi}{6}$$
$$x_{1} = \pi n + \frac{\pi}{6}$$
This roots
$$x_{1} = \pi n + \frac{\pi}{6}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\pi n + \frac{\pi}{6}\right) + - \frac{1}{10}$$
=
$$\pi n - \frac{1}{10} + \frac{\pi}{6}$$
substitute to the expression
$$\tan{\left(x \right)} \geq \frac{1}{\sqrt{3}}$$
$$\tan{\left(\pi n - \frac{1}{10} + \frac{\pi}{6} \right)} \geq \frac{1}{\sqrt{3}}$$
___
/ 1 pi \ \/ 3
tan|- -- + -- + pi*n| >= -----
\ 10 6 / 3
but
___
/ 1 pi \ \/ 3
tan|- -- + -- + pi*n| < -----
\ 10 6 / 3
Then
$$x \leq \pi n + \frac{\pi}{6}$$
no execute
the solution of our inequality is:
$$x \geq \pi n + \frac{\pi}{6}$$
_____
/
-------•-------
x1