Mister Exam

ctgx>700 inequation

A inequation with variable

The solution

You have entered [src]
cot(x) > 700
$$\cot{\left(x \right)} > 700$$
cot(x) > 700
Detail solution
Given the inequality:
$$\cot{\left(x \right)} > 700$$
To solve this inequality, we must first solve the corresponding equation:
$$\cot{\left(x \right)} = 700$$
Solve:
Given the equation
$$\cot{\left(x \right)} = 700$$
- this is the simplest trigonometric equation
This equation is transformed to
$$x = \pi n + \operatorname{acot}{\left(700 \right)}$$
Or
$$x = \pi n + \operatorname{acot}{\left(700 \right)}$$
, where n - is a integer
$$x_{1} = \pi n + \operatorname{acot}{\left(700 \right)}$$
$$x_{1} = \pi n + \operatorname{acot}{\left(700 \right)}$$
This roots
$$x_{1} = \pi n + \operatorname{acot}{\left(700 \right)}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\pi n + \operatorname{acot}{\left(700 \right)}\right) - \frac{1}{10}$$
=
$$\pi n - \frac{1}{10} + \operatorname{acot}{\left(700 \right)}$$
substitute to the expression
$$\cot{\left(x \right)} > 700$$
$$\cot{\left(\pi n - \frac{1}{10} + \operatorname{acot}{\left(700 \right)} \right)} > 700$$
-cot(1/10 - acot(700)) > 700

Then
$$x < \pi n + \operatorname{acot}{\left(700 \right)}$$
no execute
the solution of our inequality is:
$$x > \pi n + \operatorname{acot}{\left(700 \right)}$$
         _____  
        /
-------ο-------
       x_1
Solving inequality on a graph
Rapid solution [src]
And(0 < x, x < atan(1/700))
$$0 < x \wedge x < \operatorname{atan}{\left(\frac{1}{700} \right)}$$
(0 < x)∧(x < atan(1/700))
Rapid solution 2 [src]
(0, atan(1/700))
$$x\ in\ \left(0, \operatorname{atan}{\left(\frac{1}{700} \right)}\right)$$
x in Interval.open(0, atan(1/700))
The graph
ctgx>700 inequation