Mister Exam

tg2x>sqrt3/3 inequation

A inequation with variable

The solution

You have entered [src]
             ___
           \/ 3 
tan(2*x) > -----
             3  
$$\tan{\left(2 x \right)} > \frac{\sqrt{3}}{3}$$
tan(2*x) > sqrt(3)/3
Detail solution
Given the inequality:
$$\tan{\left(2 x \right)} > \frac{\sqrt{3}}{3}$$
To solve this inequality, we must first solve the corresponding equation:
$$\tan{\left(2 x \right)} = \frac{\sqrt{3}}{3}$$
Solve:
Given the equation
$$\tan{\left(2 x \right)} = \frac{\sqrt{3}}{3}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$2 x = \pi n + \operatorname{atan}{\left(\frac{\sqrt{3}}{3} \right)}$$
Or
$$2 x = \pi n + \frac{\pi}{6}$$
, where n - is a integer
Divide both parts of the equation by
$$2$$
$$x_{1} = \frac{\pi n}{2} + \frac{\pi}{12}$$
$$x_{1} = \frac{\pi n}{2} + \frac{\pi}{12}$$
This roots
$$x_{1} = \frac{\pi n}{2} + \frac{\pi}{12}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\frac{\pi n}{2} + \frac{\pi}{12}\right) + - \frac{1}{10}$$
=
$$\frac{\pi n}{2} - \frac{1}{10} + \frac{\pi}{12}$$
substitute to the expression
$$\tan{\left(2 x \right)} > \frac{\sqrt{3}}{3}$$
$$\tan{\left(2 \left(\frac{\pi n}{2} - \frac{1}{10} + \frac{\pi}{12}\right) \right)} > \frac{\sqrt{3}}{3}$$
                         ___
   /  1   pi       \   \/ 3 
tan|- - + -- + pi*n| > -----
   \  5   6        /     3  
                       

Then
$$x < \frac{\pi n}{2} + \frac{\pi}{12}$$
no execute
the solution of our inequality is:
$$x > \frac{\pi n}{2} + \frac{\pi}{12}$$
         _____  
        /
-------ο-------
       x1
Solving inequality on a graph
Rapid solution 2 [src]
      /  ___     ___\     
      |\/ 2  - \/ 6 |  pi 
(-atan|-------------|, --)
      |  ___     ___|  4  
      \\/ 2  + \/ 6 /     
$$x\ in\ \left(- \operatorname{atan}{\left(\frac{- \sqrt{6} + \sqrt{2}}{\sqrt{2} + \sqrt{6}} \right)}, \frac{\pi}{4}\right)$$
x in Interval.open(-atan((-sqrt(6) + sqrt(2))/(sqrt(2) + sqrt(6))), pi/4)
Rapid solution [src]
   /             /  ___     ___\    \
   |    pi       |\/ 2  - \/ 6 |    |
And|x < --, -atan|-------------| < x|
   |    4        |  ___     ___|    |
   \             \\/ 2  + \/ 6 /    /
$$x < \frac{\pi}{4} \wedge - \operatorname{atan}{\left(\frac{- \sqrt{6} + \sqrt{2}}{\sqrt{2} + \sqrt{6}} \right)} < x$$
(x < pi/4)∧(-atan((sqrt(2) - sqrt(6))/(sqrt(2) + sqrt(6))) < x)