Mister Exam

tan(x)≥1 inequation

A inequation with variable

The solution

You have entered [src]
tan(x) >= 1
$$\tan{\left(x \right)} \geq 1$$
tan(x) >= 1
Detail solution
Given the inequality:
$$\tan{\left(x \right)} \geq 1$$
To solve this inequality, we must first solve the corresponding equation:
$$\tan{\left(x \right)} = 1$$
Solve:
Given the equation
$$\tan{\left(x \right)} = 1$$
- this is the simplest trigonometric equation
This equation is transformed to
$$x = \pi n + \operatorname{atan}{\left(1 \right)}$$
Or
$$x = \pi n + \frac{\pi}{4}$$
, where n - is a integer
$$x_{1} = \pi n + \frac{\pi}{4}$$
$$x_{1} = \pi n + \frac{\pi}{4}$$
This roots
$$x_{1} = \pi n + \frac{\pi}{4}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\pi n + \frac{\pi}{4}\right) - \frac{1}{10}$$
=
$$\pi n - \frac{1}{10} + \frac{\pi}{4}$$
substitute to the expression
$$\tan{\left(x \right)} \geq 1$$
$$\tan{\left(\pi n - \frac{1}{10} + \frac{\pi}{4} \right)} \geq 1$$
   /1    pi\     
cot|-- + --| >= 1
   \10   4 /     

but
   /1    pi\    
cot|-- + --| < 1
   \10   4 /    

Then
$$x \leq \pi n + \frac{\pi}{4}$$
no execute
the solution of our inequality is:
$$x \geq \pi n + \frac{\pi}{4}$$
         _____  
        /
-------•-------
       x_1
Solving inequality on a graph
Rapid solution 2 [src]
 pi  pi 
[--, --)
 4   2  
$$x\ in\ \left[\frac{\pi}{4}, \frac{\pi}{2}\right)$$
x in Interval.Ropen(pi/4, pi/2)
Rapid solution [src]
   /pi           pi\
And|-- <= x, x < --|
   \4            2 /
$$\frac{\pi}{4} \leq x \wedge x < \frac{\pi}{2}$$
(pi/4 <= x)∧(x < pi/2)
The graph
tan(x)≥1 inequation