Given the inequality:
$$\sin{\left(x - 3 \right)} > 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\sin{\left(x - 3 \right)} = 0$$
Solve:
Given the equation
$$\sin{\left(x - 3 \right)} = 0$$
- this is the simplest trigonometric equation
with the change of sign in 0
We get:
$$\sin{\left(x - 3 \right)} = 0$$
This equation is transformed to
$$x - 3 = 2 \pi n + \operatorname{asin}{\left(0 \right)}$$
$$x - 3 = 2 \pi n - \operatorname{asin}{\left(0 \right)} + \pi$$
Or
$$x - 3 = 2 \pi n$$
$$x - 3 = 2 \pi n + \pi$$
, where n - is a integer
Move
$$-3$$
to right part of the equation
with the opposite sign, in total:
$$x = 2 \pi n + 3$$
$$x = 2 \pi n + 3 + \pi$$
$$x_{1} = 2 \pi n + 3$$
$$x_{2} = 2 \pi n + 3 + \pi$$
$$x_{1} = 2 \pi n + 3$$
$$x_{2} = 2 \pi n + 3 + \pi$$
This roots
$$x_{1} = 2 \pi n + 3$$
$$x_{2} = 2 \pi n + 3 + \pi$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(2 \pi n + 3\right) + - \frac{1}{10}$$
=
$$2 \pi n + \frac{29}{10}$$
substitute to the expression
$$\sin{\left(x - 3 \right)} > 0$$
$$\sin{\left(\left(2 \pi n + \frac{29}{10}\right) - 3 \right)} > 0$$
sin(-1/10 + 2*pi*n) > 0
Then
$$x < 2 \pi n + 3$$
no execute
one of the solutions of our inequality is:
$$x > 2 \pi n + 3 \wedge x < 2 \pi n + 3 + \pi$$
_____
/ \
-------ο-------ο-------
x1 x2