Given the inequality:
$$\left(2 \sin{\left(x \right)} - 3\right) \tan{\left(x \right)} > 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\left(2 \sin{\left(x \right)} - 3\right) \tan{\left(x \right)} = 0$$
Solve:
$$x_{1} = 0$$
$$x_{2} = 2 \operatorname{atan}{\left(\frac{2}{3} - \frac{\sqrt{5} i}{3} \right)}$$
$$x_{3} = 2 \operatorname{atan}{\left(\frac{2}{3} + \frac{\sqrt{5} i}{3} \right)}$$
Exclude the complex solutions:
$$x_{1} = 0$$
This roots
$$x_{1} = 0$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10}$$
=
$$- \frac{1}{10}$$
substitute to the expression
$$\left(2 \sin{\left(x \right)} - 3\right) \tan{\left(x \right)} > 0$$
$$\left(-3 + 2 \sin{\left(- \frac{1}{10} \right)}\right) \tan{\left(- \frac{1}{10} \right)} > 0$$
-(-3 - 2*sin(1/10))*tan(1/10) > 0
the solution of our inequality is:
$$x < 0$$
_____
\
-------ο-------
x1