Mister Exam

Other calculators

sin(x)>-0.4 inequation

A inequation with variable

The solution

You have entered [src]
sin(x) > -2/5
$$\sin{\left(x \right)} > - \frac{2}{5}$$
sin(x) > -2/5
Detail solution
Given the inequality:
$$\sin{\left(x \right)} > - \frac{2}{5}$$
To solve this inequality, we must first solve the corresponding equation:
$$\sin{\left(x \right)} = - \frac{2}{5}$$
Solve:
Given the equation
$$\sin{\left(x \right)} = - \frac{2}{5}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$x = 2 \pi n + \operatorname{asin}{\left(- \frac{2}{5} \right)}$$
$$x = 2 \pi n - \operatorname{asin}{\left(- \frac{2}{5} \right)} + \pi$$
Or
$$x = 2 \pi n - \operatorname{asin}{\left(\frac{2}{5} \right)}$$
$$x = 2 \pi n + \operatorname{asin}{\left(\frac{2}{5} \right)} + \pi$$
, where n - is a integer
$$x_{1} = 2 \pi n - \operatorname{asin}{\left(\frac{2}{5} \right)}$$
$$x_{2} = 2 \pi n + \operatorname{asin}{\left(\frac{2}{5} \right)} + \pi$$
$$x_{1} = 2 \pi n - \operatorname{asin}{\left(\frac{2}{5} \right)}$$
$$x_{2} = 2 \pi n + \operatorname{asin}{\left(\frac{2}{5} \right)} + \pi$$
This roots
$$x_{1} = 2 \pi n - \operatorname{asin}{\left(\frac{2}{5} \right)}$$
$$x_{2} = 2 \pi n + \operatorname{asin}{\left(\frac{2}{5} \right)} + \pi$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(2 \pi n - \operatorname{asin}{\left(\frac{2}{5} \right)}\right) + - \frac{1}{10}$$
=
$$2 \pi n - \operatorname{asin}{\left(\frac{2}{5} \right)} - \frac{1}{10}$$
substitute to the expression
$$\sin{\left(x \right)} > - \frac{2}{5}$$
$$\sin{\left(2 \pi n - \operatorname{asin}{\left(\frac{2}{5} \right)} - \frac{1}{10} \right)} > - \frac{2}{5}$$
-sin(1/10 - 2*pi*n + asin(2/5)) > -2/5

Then
$$x < 2 \pi n - \operatorname{asin}{\left(\frac{2}{5} \right)}$$
no execute
one of the solutions of our inequality is:
$$x > 2 \pi n - \operatorname{asin}{\left(\frac{2}{5} \right)} \wedge x < 2 \pi n + \operatorname{asin}{\left(\frac{2}{5} \right)} + \pi$$
         _____  
        /     \  
-------ο-------ο-------
       x1      x2
Solving inequality on a graph
Rapid solution [src]
  /   /                     /    ____\\     /                 /    ____\           \\
  |   |                     |2*\/ 21 ||     |                 |2*\/ 21 |           ||
Or|And|0 <= x, x < pi + atan|--------||, And|x <= 2*pi, - atan|--------| + 2*pi < x||
  \   \                     \   21   //     \                 \   21   /           //
$$\left(0 \leq x \wedge x < \operatorname{atan}{\left(\frac{2 \sqrt{21}}{21} \right)} + \pi\right) \vee \left(x \leq 2 \pi \wedge - \operatorname{atan}{\left(\frac{2 \sqrt{21}}{21} \right)} + 2 \pi < x\right)$$
((0 <= x)∧(x < pi + atan(2*sqrt(21)/21)))∨((x <= 2*pi)∧(-atan(2*sqrt(21)/21) + 2*pi < x))
Rapid solution 2 [src]
             /    ____\           /    ____\              
             |2*\/ 21 |           |2*\/ 21 |              
[0, pi + atan|--------|) U (- atan|--------| + 2*pi, 2*pi]
             \   21   /           \   21   /              
$$x\ in\ \left[0, \operatorname{atan}{\left(\frac{2 \sqrt{21}}{21} \right)} + \pi\right) \cup \left(- \operatorname{atan}{\left(\frac{2 \sqrt{21}}{21} \right)} + 2 \pi, 2 \pi\right]$$
x in Union(Interval.Ropen(0, atan(2*sqrt(21)/21) + pi), Interval.Lopen(-atan(2*sqrt(21)/21) + 2*pi, 2*pi))