Mister Exam

Other calculators

x/(x+3)-(-1+3/x)+13/(x^2+2*x-3)<0 inequation

A inequation with variable

The solution

You have entered [src]
  x         3        13         
----- + 1 - - + ------------ < 0
x + 3       x    2              
                x  + 2*x - 3    
$$\left(\frac{x}{x + 3} + \left(1 - \frac{3}{x}\right)\right) + \frac{13}{\left(x^{2} + 2 x\right) - 3} < 0$$
x/(x + 3) + 1 - 3/x + 13/(x^2 + 2*x - 3) < 0
Detail solution
Given the inequality:
$$\left(\frac{x}{x + 3} + \left(1 - \frac{3}{x}\right)\right) + \frac{13}{\left(x^{2} + 2 x\right) - 3} < 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\left(\frac{x}{x + 3} + \left(1 - \frac{3}{x}\right)\right) + \frac{13}{\left(x^{2} + 2 x\right) - 3} = 0$$
Solve:
$$x_{1} = \frac{1}{3} + \frac{5}{3 \left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{275}{4} + \frac{15 \sqrt{345}}{4}}} - \frac{\left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{275}{4} + \frac{15 \sqrt{345}}{4}}}{3}$$
$$x_{2} = \frac{1}{3} - \frac{\left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{275}{4} + \frac{15 \sqrt{345}}{4}}}{3} + \frac{5}{3 \left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{275}{4} + \frac{15 \sqrt{345}}{4}}}$$
$$x_{3} = - \frac{\sqrt[3]{\frac{275}{4} + \frac{15 \sqrt{345}}{4}}}{3} + \frac{5}{3 \sqrt[3]{\frac{275}{4} + \frac{15 \sqrt{345}}{4}}} + \frac{1}{3}$$
Exclude the complex solutions:
$$x_{1} = - \frac{\sqrt[3]{\frac{275}{4} + \frac{15 \sqrt{345}}{4}}}{3} + \frac{5}{3 \sqrt[3]{\frac{275}{4} + \frac{15 \sqrt{345}}{4}}} + \frac{1}{3}$$
This roots
$$x_{1} = - \frac{\sqrt[3]{\frac{275}{4} + \frac{15 \sqrt{345}}{4}}}{3} + \frac{5}{3 \sqrt[3]{\frac{275}{4} + \frac{15 \sqrt{345}}{4}}} + \frac{1}{3}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(- \frac{\sqrt[3]{\frac{275}{4} + \frac{15 \sqrt{345}}{4}}}{3} + \frac{5}{3 \sqrt[3]{\frac{275}{4} + \frac{15 \sqrt{345}}{4}}} + \frac{1}{3}\right) + - \frac{1}{10}$$
=
$$- \frac{\sqrt[3]{\frac{275}{4} + \frac{15 \sqrt{345}}{4}}}{3} + \frac{7}{30} + \frac{5}{3 \sqrt[3]{\frac{275}{4} + \frac{15 \sqrt{345}}{4}}}$$
substitute to the expression
$$\left(\frac{x}{x + 3} + \left(1 - \frac{3}{x}\right)\right) + \frac{13}{\left(x^{2} + 2 x\right) - 3} < 0$$
$$\frac{13}{-3 + \left(2 \left(- \frac{\sqrt[3]{\frac{275}{4} + \frac{15 \sqrt{345}}{4}}}{3} + \frac{7}{30} + \frac{5}{3 \sqrt[3]{\frac{275}{4} + \frac{15 \sqrt{345}}{4}}}\right) + \left(- \frac{\sqrt[3]{\frac{275}{4} + \frac{15 \sqrt{345}}{4}}}{3} + \frac{7}{30} + \frac{5}{3 \sqrt[3]{\frac{275}{4} + \frac{15 \sqrt{345}}{4}}}\right)^{2}\right)} + \left(\frac{- \frac{\sqrt[3]{\frac{275}{4} + \frac{15 \sqrt{345}}{4}}}{3} + \frac{7}{30} + \frac{5}{3 \sqrt[3]{\frac{275}{4} + \frac{15 \sqrt{345}}{4}}}}{\left(- \frac{\sqrt[3]{\frac{275}{4} + \frac{15 \sqrt{345}}{4}}}{3} + \frac{7}{30} + \frac{5}{3 \sqrt[3]{\frac{275}{4} + \frac{15 \sqrt{345}}{4}}}\right) + 3} + \left(1 - \frac{3}{- \frac{\sqrt[3]{\frac{275}{4} + \frac{15 \sqrt{345}}{4}}}{3} + \frac{7}{30} + \frac{5}{3 \sqrt[3]{\frac{275}{4} + \frac{15 \sqrt{345}}{4}}}}\right)\right) < 0$$
                                                                                                                                                                                                      __________________                                
                                                                                                                                                                                                     /            _____                                 
                                                                                                                                                                                                    /  275   15*\/ 345                                  
                                                                                                                                                                                                 3 /   --- + ----------                                 
                                                                                                                                                                                            7    \/     4        4                     5                
                                                                                                                                                                                            -- - ----------------------- + -------------------------    
                                                                                                                                                                                            30              3                     __________________    
                                                                                                                                                                                                                                 /            _____     
                                                                                                                                                                                                                                /  275   15*\/ 345      
                                                                                                                                                                                                                           3*3 /   --- + ----------     
                               3                                                                                           13                                                                                                \/     4        4          
1 - -------------------------------------------------------- + -------------------------------------------------------------------------------------------------------------------------- + --------------------------------------------------------    
              __________________                                                                                                2                                                                     __________________                             < 0
             /            _____                                       /          __________________                            \           __________________                                        /            _____                                 
            /  275   15*\/ 345                                        |         /            _____                             |          /            _____                                        /  275   15*\/ 345                                  
         3 /   --- + ----------                                       |        /  275   15*\/ 345                              |         /  275   15*\/ 345                                      3 /   --- + ----------                                 
    7    \/     4        4                     5                      |     3 /   --- + ----------                             |    2*3 /   --- + ----------                                97   \/     4        4                     5                
    -- - ----------------------- + -------------------------     38   |7    \/     4        4                     5            |      \/     4        4                     10              -- - ----------------------- + -------------------------    
    30              3                     __________________   - -- + |-- - ----------------------- + -------------------------|  - ------------------------- + -------------------------   30              3                     __________________    
                                         /            _____      15   |30              3                     __________________|                3                      __________________                                        /            _____     
                                        /  275   15*\/ 345            |                                     /            _____ |                                      /            _____                                        /  275   15*\/ 345      
                                   3*3 /   --- + ----------           |                                    /  275   15*\/ 345  |                                     /  275   15*\/ 345                                    3*3 /   --- + ----------     
                                     \/     4        4                |                               3*3 /   --- + ---------- |                                3*3 /   --- + ----------                                     \/     4        4          
                                                                      \                                 \/     4        4      /                                  \/     4        4                                                                     
    

the solution of our inequality is:
$$x < - \frac{\sqrt[3]{\frac{275}{4} + \frac{15 \sqrt{345}}{4}}}{3} + \frac{5}{3 \sqrt[3]{\frac{275}{4} + \frac{15 \sqrt{345}}{4}}} + \frac{1}{3}$$
 _____          
      \    
-------ο-------
       x1
Solving inequality on a graph
Rapid solution [src]
  /   /                   /   3      2             \\                   \
Or\And\-3 < x, x < CRootOf\2*x  - 2*x  + 4*x + 9, 0//, And(0 < x, x < 1)/
$$\left(-3 < x \wedge x < \operatorname{CRootOf} {\left(2 x^{3} - 2 x^{2} + 4 x + 9, 0\right)}\right) \vee \left(0 < x \wedge x < 1\right)$$
((0 < x)∧(x < 1))∨((-3 < x)∧(x < CRootOf(2*x^3 - 2*x^2 + 4*x + 9, 0)))
Rapid solution 2 [src]
            /   3      2             \          
(-3, CRootOf\2*x  - 2*x  + 4*x + 9, 0/) U (0, 1)
$$x\ in\ \left(-3, \operatorname{CRootOf} {\left(2 x^{3} - 2 x^{2} + 4 x + 9, 0\right)}\right) \cup \left(0, 1\right)$$
x in Union(Interval.open(-3, CRootOf(2*x^3 - 2*x^2 + 4*x + 9, 0)), Interval.open(0, 1))