Mister Exam

Other calculators

sinx/2<-√3/2 inequation

A inequation with variable

The solution

You have entered [src]
            ___ 
sin(x)   -\/ 3  
------ < -------
  2         2   
$$\frac{\sin{\left(x \right)}}{2} < \frac{\left(-1\right) \sqrt{3}}{2}$$
sin(x)/2 < (-sqrt(3))/2
Detail solution
Given the inequality:
$$\frac{\sin{\left(x \right)}}{2} < \frac{\left(-1\right) \sqrt{3}}{2}$$
To solve this inequality, we must first solve the corresponding equation:
$$\frac{\sin{\left(x \right)}}{2} = \frac{\left(-1\right) \sqrt{3}}{2}$$
Solve:
Given the equation
$$\frac{\sin{\left(x \right)}}{2} = \frac{\left(-1\right) \sqrt{3}}{2}$$
- this is the simplest trigonometric equation
Divide both parts of the equation by 1/2

The equation is transformed to
$$\sin{\left(x \right)} = - \sqrt{3}$$
As right part of the equation
modulo =
True

but sin
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
$$x_{1} = \pi + \operatorname{asin}{\left(\sqrt{3} \right)}$$
$$x_{2} = - \operatorname{asin}{\left(\sqrt{3} \right)}$$
Exclude the complex solutions:
This equation has no roots,
this inequality is executed for any x value or has no solutions
check it
subtitute random point x, for example
x0 = 0

$$\frac{\sin{\left(0 \right)}}{2} < \frac{\left(-1\right) \sqrt{3}}{2}$$
       ___ 
    -\/ 3  
0 < -------
       2   
    

but
       ___ 
    -\/ 3  
0 > -------
       2   
    

so the inequality has no solutions
Solving inequality on a graph
Rapid solution
This inequality has no solutions