Given the inequality:
$$\sin{\left(\frac{4 x}{3} \right)} > \frac{\left(-1\right) \sqrt{3}}{2}$$
To solve this inequality, we must first solve the corresponding equation:
$$\sin{\left(\frac{4 x}{3} \right)} = \frac{\left(-1\right) \sqrt{3}}{2}$$
Solve:
Given the equation
$$\sin{\left(\frac{4 x}{3} \right)} = \frac{\left(-1\right) \sqrt{3}}{2}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$\frac{4 x}{3} = 2 \pi n + \operatorname{asin}{\left(- \frac{\sqrt{3}}{2} \right)}$$
$$\frac{4 x}{3} = 2 \pi n - \operatorname{asin}{\left(- \frac{\sqrt{3}}{2} \right)} + \pi$$
Or
$$\frac{4 x}{3} = 2 \pi n - \frac{\pi}{3}$$
$$\frac{4 x}{3} = 2 \pi n + \frac{4 \pi}{3}$$
, where n - is a integer
Divide both parts of the equation by
$$\frac{4}{3}$$
$$x_{1} = \frac{3 \pi n}{2} - \frac{\pi}{4}$$
$$x_{2} = \frac{3 \pi n}{2} + \pi$$
$$x_{1} = \frac{3 \pi n}{2} - \frac{\pi}{4}$$
$$x_{2} = \frac{3 \pi n}{2} + \pi$$
This roots
$$x_{1} = \frac{3 \pi n}{2} - \frac{\pi}{4}$$
$$x_{2} = \frac{3 \pi n}{2} + \pi$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\frac{3 \pi n}{2} - \frac{\pi}{4}\right) + - \frac{1}{10}$$
=
$$\frac{3 \pi n}{2} - \frac{\pi}{4} - \frac{1}{10}$$
substitute to the expression
$$\sin{\left(\frac{4 x}{3} \right)} > \frac{\left(-1\right) \sqrt{3}}{2}$$
$$\sin{\left(\frac{4 \left(\frac{3 \pi n}{2} - \frac{\pi}{4} - \frac{1}{10}\right)}{3} \right)} > \frac{\left(-1\right) \sqrt{3}}{2}$$
___
/2 pi \ -\/ 3
-sin|-- + -- - 2*pi*n| > -------
\15 3 / 2
Then
$$x < \frac{3 \pi n}{2} - \frac{\pi}{4}$$
no execute
one of the solutions of our inequality is:
$$x > \frac{3 \pi n}{2} - \frac{\pi}{4} \wedge x < \frac{3 \pi n}{2} + \pi$$
_____
/ \
-------ο-------ο-------
x1 x2