Mister Exam

Other calculators


sin4x/3>-sqrt(3)/2

sin4x/3>-sqrt(3)/2 inequation

A inequation with variable

The solution

You have entered [src]
              ___ 
sin(4*x)   -\/ 3  
-------- > -------
   3          2   
sin(4x)3>(1)32\frac{\sin{\left(4 x \right)}}{3} > \frac{\left(-1\right) \sqrt{3}}{2}
sin(4*x)/3 > -sqrt(3)/2
Detail solution
Given the inequality:
sin(4x)3>(1)32\frac{\sin{\left(4 x \right)}}{3} > \frac{\left(-1\right) \sqrt{3}}{2}
To solve this inequality, we must first solve the corresponding equation:
sin(4x)3=(1)32\frac{\sin{\left(4 x \right)}}{3} = \frac{\left(-1\right) \sqrt{3}}{2}
Solve:
Given the equation
sin(4x)3=(1)32\frac{\sin{\left(4 x \right)}}{3} = \frac{\left(-1\right) \sqrt{3}}{2}
- this is the simplest trigonometric equation
Divide both parts of the equation by 1/3

The equation is transformed to
sin(4x)=332\sin{\left(4 x \right)} = - \frac{3 \sqrt{3}}{2}
As right part of the equation
modulo =
True

but sin
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
x1=π4+asin(332)4x_{1} = \frac{\pi}{4} + \frac{\operatorname{asin}{\left(\frac{3 \sqrt{3}}{2} \right)}}{4}
x2=asin(332)4x_{2} = - \frac{\operatorname{asin}{\left(\frac{3 \sqrt{3}}{2} \right)}}{4}
Exclude the complex solutions:
This equation has no roots,
this inequality is executed for any x value or has no solutions
check it
subtitute random point x, for example
x0 = 0

sin(40)3>(1)32\frac{\sin{\left(4 \cdot 0 \right)}}{3} > \frac{\left(-1\right) \sqrt{3}}{2}
       ___ 
    -\/ 3  
0 > -------
       2   
    

so the inequality is always executed
Solving inequality on a graph
02468-8-6-4-2-10101-1
Rapid solution 2 [src]
(-oo, oo)
x in (,)x\ in\ \left(-\infty, \infty\right)
x in Interval(-oo, oo)
Rapid solution [src]
And(-oo < x, x < oo)
<xx<-\infty < x \wedge x < \infty
(-oo < x)∧(x < oo)
The graph
sin4x/3>-sqrt(3)/2 inequation