Mister Exam

Other calculators


sin4x/3>-sqrt(3)/2

sin4x/3>-sqrt(3)/2 inequation

A inequation with variable

The solution

You have entered [src]
              ___ 
sin(4*x)   -\/ 3  
-------- > -------
   3          2   
$$\frac{\sin{\left(4 x \right)}}{3} > \frac{\left(-1\right) \sqrt{3}}{2}$$
sin(4*x)/3 > -sqrt(3)/2
Detail solution
Given the inequality:
$$\frac{\sin{\left(4 x \right)}}{3} > \frac{\left(-1\right) \sqrt{3}}{2}$$
To solve this inequality, we must first solve the corresponding equation:
$$\frac{\sin{\left(4 x \right)}}{3} = \frac{\left(-1\right) \sqrt{3}}{2}$$
Solve:
Given the equation
$$\frac{\sin{\left(4 x \right)}}{3} = \frac{\left(-1\right) \sqrt{3}}{2}$$
- this is the simplest trigonometric equation
Divide both parts of the equation by 1/3

The equation is transformed to
$$\sin{\left(4 x \right)} = - \frac{3 \sqrt{3}}{2}$$
As right part of the equation
modulo =
True

but sin
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
$$x_{1} = \frac{\pi}{4} + \frac{\operatorname{asin}{\left(\frac{3 \sqrt{3}}{2} \right)}}{4}$$
$$x_{2} = - \frac{\operatorname{asin}{\left(\frac{3 \sqrt{3}}{2} \right)}}{4}$$
Exclude the complex solutions:
This equation has no roots,
this inequality is executed for any x value or has no solutions
check it
subtitute random point x, for example
x0 = 0

$$\frac{\sin{\left(4 \cdot 0 \right)}}{3} > \frac{\left(-1\right) \sqrt{3}}{2}$$
       ___ 
    -\/ 3  
0 > -------
       2   
    

so the inequality is always executed
Solving inequality on a graph
Rapid solution 2 [src]
(-oo, oo)
$$x\ in\ \left(-\infty, \infty\right)$$
x in Interval(-oo, oo)
Rapid solution [src]
And(-oo < x, x < oo)
$$-\infty < x \wedge x < \infty$$
(-oo < x)∧(x < oo)
The graph
sin4x/3>-sqrt(3)/2 inequation