Mister Exam

Other calculators

\root(3)(3x-8)<-2 inequation

A inequation with variable

The solution

You have entered [src]
  ___               
\/ 3 *(3*x - 8) < -2
$$\sqrt{3} \left(3 x - 8\right) < -2$$
sqrt(3)*(3*x - 8) < -2
Detail solution
Given the inequality:
$$\sqrt{3} \left(3 x - 8\right) < -2$$
To solve this inequality, we must first solve the corresponding equation:
$$\sqrt{3} \left(3 x - 8\right) = -2$$
Solve:
Given the equation:
sqrt(3)*(3*x-8) = -2

Expand expressions:
-8*sqrt(3) + 3*x*sqrt(3) = -2

Reducing, you get:
2 - 8*sqrt(3) + 3*x*sqrt(3) = 0

Expand brackets in the left part
2 - 8*sqrt3 + 3*x*sqrt3 = 0

Move free summands (without x)
from left part to right part, we given:
$$3 \sqrt{3} x - 8 \sqrt{3} = -2$$
Divide both parts of the equation by (-8*sqrt(3) + 3*x*sqrt(3))/x
x = -2 / ((-8*sqrt(3) + 3*x*sqrt(3))/x)

We get the answer: x = 8/3 - 2*sqrt(3)/9
$$x_{1} = \frac{8}{3} - \frac{2 \sqrt{3}}{9}$$
$$x_{1} = \frac{8}{3} - \frac{2 \sqrt{3}}{9}$$
This roots
$$x_{1} = \frac{8}{3} - \frac{2 \sqrt{3}}{9}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + \left(\frac{8}{3} - \frac{2 \sqrt{3}}{9}\right)$$
=
$$\frac{77}{30} - \frac{2 \sqrt{3}}{9}$$
substitute to the expression
$$\sqrt{3} \left(3 x - 8\right) < -2$$
$$\sqrt{3} \left(-8 + 3 \left(\frac{77}{30} - \frac{2 \sqrt{3}}{9}\right)\right) < -2$$
      /           ___\     
  ___ |  3    2*\/ 3 |     
\/ 3 *|- -- - -------| < -2
      \  10      3   /     
     

the solution of our inequality is:
$$x < \frac{8}{3} - \frac{2 \sqrt{3}}{9}$$
 _____          
      \    
-------ο-------
       x1
Solving inequality on a graph
Rapid solution 2 [src]
           ___ /        ___\ 
      -2*\/ 3 *\1 - 4*\/ 3 / 
(-oo, ----------------------)
                9            
$$x\ in\ \left(-\infty, - \frac{2 \sqrt{3} \left(1 - 4 \sqrt{3}\right)}{9}\right)$$
x in Interval.open(-oo, -2*sqrt(3)*(1 - 4*sqrt(3))/9)
Rapid solution [src]
   /                  ___ /        ___\\
   |             -2*\/ 3 *\1 - 4*\/ 3 /|
And|-oo < x, x < ----------------------|
   \                       9           /
$$-\infty < x \wedge x < - \frac{2 \sqrt{3} \left(1 - 4 \sqrt{3}\right)}{9}$$
(-oo < x)∧(x < -2*sqrt(3)*(1 - 4*sqrt(3))/9)