Given the inequality:
$$\sqrt{3} \left(3 x - 8\right) < -2$$
To solve this inequality, we must first solve the corresponding equation:
$$\sqrt{3} \left(3 x - 8\right) = -2$$
Solve:
Given the equation:
sqrt(3)*(3*x-8) = -2
Expand expressions:
-8*sqrt(3) + 3*x*sqrt(3) = -2
Reducing, you get:
2 - 8*sqrt(3) + 3*x*sqrt(3) = 0
Expand brackets in the left part
2 - 8*sqrt3 + 3*x*sqrt3 = 0
Move free summands (without x)
from left part to right part, we given:
$$3 \sqrt{3} x - 8 \sqrt{3} = -2$$
Divide both parts of the equation by (-8*sqrt(3) + 3*x*sqrt(3))/x
x = -2 / ((-8*sqrt(3) + 3*x*sqrt(3))/x)
We get the answer: x = 8/3 - 2*sqrt(3)/9
$$x_{1} = \frac{8}{3} - \frac{2 \sqrt{3}}{9}$$
$$x_{1} = \frac{8}{3} - \frac{2 \sqrt{3}}{9}$$
This roots
$$x_{1} = \frac{8}{3} - \frac{2 \sqrt{3}}{9}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + \left(\frac{8}{3} - \frac{2 \sqrt{3}}{9}\right)$$
=
$$\frac{77}{30} - \frac{2 \sqrt{3}}{9}$$
substitute to the expression
$$\sqrt{3} \left(3 x - 8\right) < -2$$
$$\sqrt{3} \left(-8 + 3 \left(\frac{77}{30} - \frac{2 \sqrt{3}}{9}\right)\right) < -2$$
/ ___\
___ | 3 2*\/ 3 |
\/ 3 *|- -- - -------| < -2
\ 10 3 /
the solution of our inequality is:
$$x < \frac{8}{3} - \frac{2 \sqrt{3}}{9}$$
_____
\
-------ο-------
x1