Mister Exam

Other calculators

(1/2)^(x+2)>4 inequation

A inequation with variable

The solution

You have entered [src]
 -2 - x    
2       > 4
(12)x+2>4\left(\frac{1}{2}\right)^{x + 2} > 4
(1/2)^(x + 2) > 4
Detail solution
Given the inequality:
(12)x+2>4\left(\frac{1}{2}\right)^{x + 2} > 4
To solve this inequality, we must first solve the corresponding equation:
(12)x+2=4\left(\frac{1}{2}\right)^{x + 2} = 4
Solve:
Given the equation:
(12)x+2=4\left(\frac{1}{2}\right)^{x + 2} = 4
or
(12)x+24=0\left(\frac{1}{2}\right)^{x + 2} - 4 = 0
or
2x4=4\frac{2^{- x}}{4} = 4
or
(12)x=16\left(\frac{1}{2}\right)^{x} = 16
- this is the simplest exponential equation
Do replacement
v=(12)xv = \left(\frac{1}{2}\right)^{x}
we get
v16=0v - 16 = 0
or
v16=0v - 16 = 0
Move free summands (without v)
from left part to right part, we given:
v=16v = 16
do backward replacement
(12)x=v\left(\frac{1}{2}\right)^{x} = v
or
x=log(v)log(2)x = - \frac{\log{\left(v \right)}}{\log{\left(2 \right)}}
x1=16x_{1} = 16
x1=16x_{1} = 16
This roots
x1=16x_{1} = 16
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0<x1x_{0} < x_{1}
For example, let's take the point
x0=x1110x_{0} = x_{1} - \frac{1}{10}
=
110+16- \frac{1}{10} + 16
=
15910\frac{159}{10}
substitute to the expression
(12)x+2>4\left(\frac{1}{2}\right)^{x + 2} > 4
(12)2+15910>4\left(\frac{1}{2}\right)^{2 + \frac{159}{10}} > 4
10___     
\/ 2      
------ > 4
262144    
    

Then
x<16x < 16
no execute
the solution of our inequality is:
x>16x > 16
         _____  
        /
-------ο-------
       x1
Solving inequality on a graph
0246-8-6-4-20100
Rapid solution [src]
         log(4)
x < -2 - ------
         log(2)
x<2log(4)log(2)x < -2 - \frac{\log{\left(4 \right)}}{\log{\left(2 \right)}}
x < -2 - log(4)/log(2)
Rapid solution 2 [src]
           log(4) 
(-oo, -2 - ------)
           log(2) 
x in (,2log(4)log(2))x\ in\ \left(-\infty, -2 - \frac{\log{\left(4 \right)}}{\log{\left(2 \right)}}\right)
x in Interval.open(-oo, -2 - log(4)/log(2))