Mister Exam

-x²+6x+7≥0 inequation

A inequation with variable

The solution

You have entered [src]
   2               
- x  + 6*x + 7 >= 0
(x2+6x)+70\left(- x^{2} + 6 x\right) + 7 \geq 0
-x^2 + 6*x + 7 >= 0
Detail solution
Given the inequality:
(x2+6x)+70\left(- x^{2} + 6 x\right) + 7 \geq 0
To solve this inequality, we must first solve the corresponding equation:
(x2+6x)+7=0\left(- x^{2} + 6 x\right) + 7 = 0
Solve:
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
where D = b^2 - 4*a*c - it is the discriminant.
Because
a=1a = -1
b=6b = 6
c=7c = 7
, then
D = b^2 - 4 * a * c = 

(6)^2 - 4 * (-1) * (7) = 64

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
x1=1x_{1} = -1
x2=7x_{2} = 7
x1=1x_{1} = -1
x2=7x_{2} = 7
x1=1x_{1} = -1
x2=7x_{2} = 7
This roots
x1=1x_{1} = -1
x2=7x_{2} = 7
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0x1x_{0} \leq x_{1}
For example, let's take the point
x0=x1110x_{0} = x_{1} - \frac{1}{10}
=
1+110-1 + - \frac{1}{10}
=
1110- \frac{11}{10}
substitute to the expression
(x2+6x)+70\left(- x^{2} + 6 x\right) + 7 \geq 0
((11)610(1110)2)+70\left(\frac{\left(-11\right) 6}{10} - \left(- \frac{11}{10}\right)^{2}\right) + 7 \geq 0
-81      
---- >= 0
100      

but
-81     
---- < 0
100     

Then
x1x \leq -1
no execute
one of the solutions of our inequality is:
x1x7x \geq -1 \wedge x \leq 7
         _____  
        /     \  
-------•-------•-------
       x1      x2
Solving inequality on a graph
-5.0-4.0-3.0-2.0-1.05.00.01.02.03.04.0-5050
Rapid solution [src]
And(-1 <= x, x <= 7)
1xx7-1 \leq x \wedge x \leq 7
(-1 <= x)∧(x <= 7)
Rapid solution 2 [src]
[-1, 7]
x in [1,7]x\ in\ \left[-1, 7\right]
x in Interval(-1, 7)