Mister Exam

Other calculators

log[1/2,2*x-11]<-1 inequation

A inequation with variable

The solution

You have entered [src]
   / x       \     
log|---- - 11| < -1
   \11/5     /     
$$\log{\left(\frac{x}{\frac{11}{5}} - 11 \right)} < -1$$
log(x/(11/5) - 11) < -1
Detail solution
Given the inequality:
$$\log{\left(\frac{x}{\frac{11}{5}} - 11 \right)} < -1$$
To solve this inequality, we must first solve the corresponding equation:
$$\log{\left(\frac{x}{\frac{11}{5}} - 11 \right)} = -1$$
Solve:
Given the equation
$$\log{\left(\frac{x}{\frac{11}{5}} - 11 \right)} = -1$$
$$\log{\left(\frac{5 x}{11} - 11 \right)} = -1$$
This equation is of the form:
log(v)=p

By definition log
v=e^p

then
$$\frac{5 x}{11} - 11 = e^{- 1^{-1}}$$
simplify
$$\frac{5 x}{11} - 11 = e^{-1}$$
$$\frac{5 x}{11} = e^{-1} + 11$$
$$x = \frac{11}{5 e} + \frac{121}{5}$$
$$x_{1} = \frac{11 \left(1 + 11 e\right)}{5 e}$$
$$x_{1} = \frac{11 \left(1 + 11 e\right)}{5 e}$$
This roots
$$x_{1} = \frac{11 \left(1 + 11 e\right)}{5 e}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + \frac{11 \left(1 + 11 e\right)}{5 e^{1}}$$
=
$$- \frac{1}{10} + \frac{11 \left(1 + 11 e\right)}{5 e}$$
substitute to the expression
$$\log{\left(\frac{x}{\frac{11}{5}} - 11 \right)} < -1$$
$$\log{\left(-11 + \frac{- \frac{1}{10} + \frac{11 \left(1 + 11 e\right)}{5 e^{1}}}{\frac{11}{5}} \right)} < -1$$
   /  243               -1\     
log|- --- + (1 + 11*E)*e  | < -1
   \   22                 /     

the solution of our inequality is:
$$x < \frac{11 \left(1 + 11 e\right)}{5 e}$$
 _____          
      \    
-------ο-------
       x1
Solving inequality on a graph
Rapid solution [src]
   /                         -1\
   |               121   11*e  |
And|121/5 < x, x < --- + ------|
   \                5      5   /
$$\frac{121}{5} < x \wedge x < \frac{11}{5 e} + \frac{121}{5}$$
(121/5 < x)∧(x < 121/5 + 11*exp(-1)/5)
Rapid solution 2 [src]
                  -1 
        121   11*e   
(121/5, --- + ------)
         5      5    
$$x\ in\ \left(\frac{121}{5}, \frac{11}{5 e} + \frac{121}{5}\right)$$
x in Interval.open(121/5, 11*exp(-1)/5 + 121/5)