Mister Exam

Other calculators

-2*cos(x/3)>1 inequation

A inequation with variable

The solution

You have entered [src]
      /x\    
-2*cos|-| > 1
      \3/    
2cos(x3)>1- 2 \cos{\left(\frac{x}{3} \right)} > 1
-2*cos(x/3) > 1
Detail solution
Given the inequality:
2cos(x3)>1- 2 \cos{\left(\frac{x}{3} \right)} > 1
To solve this inequality, we must first solve the corresponding equation:
2cos(x3)=1- 2 \cos{\left(\frac{x}{3} \right)} = 1
Solve:
Given the equation
2cos(x3)=1- 2 \cos{\left(\frac{x}{3} \right)} = 1
- this is the simplest trigonometric equation
Divide both parts of the equation by -2

The equation is transformed to
cos(x3)=12\cos{\left(\frac{x}{3} \right)} = - \frac{1}{2}
This equation is transformed to
x3=πn+acos(12)\frac{x}{3} = \pi n + \operatorname{acos}{\left(- \frac{1}{2} \right)}
x3=πnπ+acos(12)\frac{x}{3} = \pi n - \pi + \operatorname{acos}{\left(- \frac{1}{2} \right)}
Or
x3=πn+2π3\frac{x}{3} = \pi n + \frac{2 \pi}{3}
x3=πnπ3\frac{x}{3} = \pi n - \frac{\pi}{3}
, where n - is a integer
Divide both parts of the equation by
13\frac{1}{3}
x1=3πn+2πx_{1} = 3 \pi n + 2 \pi
x2=3πnπx_{2} = 3 \pi n - \pi
x1=3πn+2πx_{1} = 3 \pi n + 2 \pi
x2=3πnπx_{2} = 3 \pi n - \pi
This roots
x1=3πn+2πx_{1} = 3 \pi n + 2 \pi
x2=3πnπx_{2} = 3 \pi n - \pi
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0<x1x_{0} < x_{1}
For example, let's take the point
x0=x1110x_{0} = x_{1} - \frac{1}{10}
=
(3πn+2π)+110\left(3 \pi n + 2 \pi\right) + - \frac{1}{10}
=
3πn110+2π3 \pi n - \frac{1}{10} + 2 \pi
substitute to the expression
2cos(x3)>1- 2 \cos{\left(\frac{x}{3} \right)} > 1
2cos(3πn110+2π3)>1- 2 \cos{\left(\frac{3 \pi n - \frac{1}{10} + 2 \pi}{3} \right)} > 1
     /  1    pi       \    
2*sin|- -- + -- + pi*n| > 1
     \  30   6        /    

Then
x<3πn+2πx < 3 \pi n + 2 \pi
no execute
one of the solutions of our inequality is:
x>3πn+2πx<3πnπx > 3 \pi n + 2 \pi \wedge x < 3 \pi n - \pi
         _____  
        /     \  
-------ο-------ο-------
       x1      x2
Solving inequality on a graph
0-50-40-30-20-10102030405060705-5
Rapid solution [src]
And(2*pi < x, x < 4*pi)
2π<xx<4π2 \pi < x \wedge x < 4 \pi
(2*pi < x)∧(x < 4*pi)
Rapid solution 2 [src]
(2*pi, 4*pi)
x in (2π,4π)x\ in\ \left(2 \pi, 4 \pi\right)
x in Interval.open(2*pi, 4*pi)