Mister Exam

Other calculators

(4+x)/(4-x)<3 inequation

A inequation with variable

The solution

You have entered [src]
4 + x    
----- < 3
4 - x    
x+44x<3\frac{x + 4}{4 - x} < 3
(x + 4)/(4 - x) < 3
Detail solution
Given the inequality:
x+44x<3\frac{x + 4}{4 - x} < 3
To solve this inequality, we must first solve the corresponding equation:
x+44x=3\frac{x + 4}{4 - x} = 3
Solve:
Given the equation:
x+44x=3\frac{x + 4}{4 - x} = 3
Multiply the equation sides by the denominator 4 - x
we get:
(4x)(x+4)x4=123x- \frac{\left(4 - x\right) \left(x + 4\right)}{x - 4} = 12 - 3 x
Expand brackets in the left part
-4-x4+x-4+x = 12 - 3*x

Looking for similar summands in the left part:
-(4 + x)*(4 - x)/(-4 + x) = 12 - 3*x

Move free summands (without x)
from left part to right part, we given:
(4x)(x+4)x4+4=163x- \frac{\left(4 - x\right) \left(x + 4\right)}{x - 4} + 4 = 16 - 3 x
Move the summands with the unknown x
from the right part to the left part:
3x(4x)(x+4)x4+4=163 x - \frac{\left(4 - x\right) \left(x + 4\right)}{x - 4} + 4 = 16
Divide both parts of the equation by (4 + 3*x - (4 + x)*(4 - x)/(-4 + x))/x
x = 16 / ((4 + 3*x - (4 + x)*(4 - x)/(-4 + x))/x)

x1=2x_{1} = 2
x1=2x_{1} = 2
This roots
x1=2x_{1} = 2
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0<x1x_{0} < x_{1}
For example, let's take the point
x0=x1110x_{0} = x_{1} - \frac{1}{10}
=
110+2- \frac{1}{10} + 2
=
1910\frac{19}{10}
substitute to the expression
x+44x<3\frac{x + 4}{4 - x} < 3
1910+441910<3\frac{\frac{19}{10} + 4}{4 - \frac{19}{10}} < 3
59    
-- < 3
21    

the solution of our inequality is:
x<2x < 2
 _____          
      \    
-------ο-------
       x1
Solving inequality on a graph
05-15-10-5101520-50005000
Rapid solution [src]
Or(And(-oo < x, x < 2), And(4 < x, x < oo))
(<xx<2)(4<xx<)\left(-\infty < x \wedge x < 2\right) \vee \left(4 < x \wedge x < \infty\right)
((-oo < x)∧(x < 2))∨((4 < x)∧(x < oo))
Rapid solution 2 [src]
(-oo, 2) U (4, oo)
x in (,2)(4,)x\ in\ \left(-\infty, 2\right) \cup \left(4, \infty\right)
x in Union(Interval.open(-oo, 2), Interval.open(4, oo))