Mister Exam

Other calculators

-2cos(x/2)<1 inequation

A inequation with variable

The solution

You have entered [src]
      /x\    
-2*cos|-| < 1
      \2/    
2cos(x2)<1- 2 \cos{\left(\frac{x}{2} \right)} < 1
-2*cos(x/2) < 1
Detail solution
Given the inequality:
2cos(x2)<1- 2 \cos{\left(\frac{x}{2} \right)} < 1
To solve this inequality, we must first solve the corresponding equation:
2cos(x2)=1- 2 \cos{\left(\frac{x}{2} \right)} = 1
Solve:
Given the equation
2cos(x2)=1- 2 \cos{\left(\frac{x}{2} \right)} = 1
- this is the simplest trigonometric equation
Divide both parts of the equation by -2

The equation is transformed to
cos(x2)=12\cos{\left(\frac{x}{2} \right)} = - \frac{1}{2}
This equation is transformed to
x2=πn+acos(12)\frac{x}{2} = \pi n + \operatorname{acos}{\left(- \frac{1}{2} \right)}
x2=πnπ+acos(12)\frac{x}{2} = \pi n - \pi + \operatorname{acos}{\left(- \frac{1}{2} \right)}
Or
x2=πn+2π3\frac{x}{2} = \pi n + \frac{2 \pi}{3}
x2=πnπ3\frac{x}{2} = \pi n - \frac{\pi}{3}
, where n - is a integer
Divide both parts of the equation by
12\frac{1}{2}
x1=2πn+4π3x_{1} = 2 \pi n + \frac{4 \pi}{3}
x2=2πn2π3x_{2} = 2 \pi n - \frac{2 \pi}{3}
x1=2πn+4π3x_{1} = 2 \pi n + \frac{4 \pi}{3}
x2=2πn2π3x_{2} = 2 \pi n - \frac{2 \pi}{3}
This roots
x1=2πn+4π3x_{1} = 2 \pi n + \frac{4 \pi}{3}
x2=2πn2π3x_{2} = 2 \pi n - \frac{2 \pi}{3}
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0<x1x_{0} < x_{1}
For example, let's take the point
x0=x1110x_{0} = x_{1} - \frac{1}{10}
=
(2πn+4π3)+110\left(2 \pi n + \frac{4 \pi}{3}\right) + - \frac{1}{10}
=
2πn110+4π32 \pi n - \frac{1}{10} + \frac{4 \pi}{3}
substitute to the expression
2cos(x2)<1- 2 \cos{\left(\frac{x}{2} \right)} < 1
2cos(2πn110+4π32)<1- 2 \cos{\left(\frac{2 \pi n - \frac{1}{10} + \frac{4 \pi}{3}}{2} \right)} < 1
     /  1    pi       \    
2*sin|- -- + -- + pi*n| < 1
     \  20   6        /    

one of the solutions of our inequality is:
x<2πn+4π3x < 2 \pi n + \frac{4 \pi}{3}
 _____           _____          
      \         /
-------ο-------ο-------
       x1      x2

Other solutions will get with the changeover to the next point
etc.
The answer:
x<2πn+4π3x < 2 \pi n + \frac{4 \pi}{3}
x>2πn2π3x > 2 \pi n - \frac{2 \pi}{3}
Solving inequality on a graph
0-80-60-40-20204060805-5
Rapid solution [src]
  /   /            4*pi\     /           8*pi    \\
Or|And|0 <= x, x < ----|, And|x <= 4*pi, ---- < x||
  \   \             3  /     \            3      //
(0xx<4π3)(x4π8π3<x)\left(0 \leq x \wedge x < \frac{4 \pi}{3}\right) \vee \left(x \leq 4 \pi \wedge \frac{8 \pi}{3} < x\right)
((0 <= x)∧(x < 4*pi/3))∨((x <= 4*pi)∧(8*pi/3 < x))
Rapid solution 2 [src]
    4*pi     8*pi       
[0, ----) U (----, 4*pi]
     3        3         
x in [0,4π3)(8π3,4π]x\ in\ \left[0, \frac{4 \pi}{3}\right) \cup \left(\frac{8 \pi}{3}, 4 \pi\right]
x in Union(Interval.Ropen(0, 4*pi/3), Interval.Lopen(8*pi/3, 4*pi))