Mister Exam

Other calculators

1-2cosx/2>0 inequation

A inequation with variable

The solution

You have entered [src]
    2*cos(x)    
1 - -------- > 0
       2        
2cos(x)2+1>0- \frac{2 \cos{\left(x \right)}}{2} + 1 > 0
-2*cos(x)/2 + 1 > 0
Detail solution
Given the inequality:
2cos(x)2+1>0- \frac{2 \cos{\left(x \right)}}{2} + 1 > 0
To solve this inequality, we must first solve the corresponding equation:
2cos(x)2+1=0- \frac{2 \cos{\left(x \right)}}{2} + 1 = 0
Solve:
Given the equation
2cos(x)2+1=0- \frac{2 \cos{\left(x \right)}}{2} + 1 = 0
- this is the simplest trigonometric equation
Move 1 to right part of the equation

with the change of sign in 1

We get:
2cos(x)2=1- \frac{2 \cos{\left(x \right)}}{2} = -1
Divide both parts of the equation by -1

The equation is transformed to
cos(x)=1\cos{\left(x \right)} = 1
This equation is transformed to
x=πn+acos(1)x = \pi n + \operatorname{acos}{\left(1 \right)}
x=πnπ+acos(1)x = \pi n - \pi + \operatorname{acos}{\left(1 \right)}
Or
x=πnx = \pi n
x=πnπx = \pi n - \pi
, where n - is a integer
x1=πnx_{1} = \pi n
x2=πnπx_{2} = \pi n - \pi
x1=πnx_{1} = \pi n
x2=πnπx_{2} = \pi n - \pi
This roots
x1=πnx_{1} = \pi n
x2=πnπx_{2} = \pi n - \pi
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0<x1x_{0} < x_{1}
For example, let's take the point
x0=x1110x_{0} = x_{1} - \frac{1}{10}
=
πn+110\pi n + - \frac{1}{10}
=
πn110\pi n - \frac{1}{10}
substitute to the expression
2cos(x)2+1>0- \frac{2 \cos{\left(x \right)}}{2} + 1 > 0
2cos(πn110)2+1>0- \frac{2 \cos{\left(\pi n - \frac{1}{10} \right)}}{2} + 1 > 0
1 - cos(-1/10 + pi*n) > 0

one of the solutions of our inequality is:
x<πnx < \pi n
 _____           _____          
      \         /
-------ο-------ο-------
       x1      x2

Other solutions will get with the changeover to the next point
etc.
The answer:
x<πnx < \pi n
x>πnπx > \pi n - \pi
Solving inequality on a graph
0-60-50-40-30-20-1010203040506004
Rapid solution [src]
And(0 < x, x < 2*pi)
0<xx<2π0 < x \wedge x < 2 \pi
(0 < x)∧(x < 2*pi)
Rapid solution 2 [src]
(0, 2*pi)
x in (0,2π)x\ in\ \left(0, 2 \pi\right)
x in Interval.open(0, 2*pi)