Mister Exam

Other calculators

log(0,7)(x2+2x)≥log(0,7)(x2+16) inequation

A inequation with variable

The solution

You have entered [src]
log(7/10)*(x2 + 2*x) >= log(7/10)*(x2 + 16)
$$\left(2 x + x_{2}\right) \log{\left(\frac{7}{10} \right)} \geq \left(x_{2} + 16\right) \log{\left(\frac{7}{10} \right)}$$
(2*x + x2)*log(7/10) >= (x2 + 16)*log(7/10)
Rapid solution [src]
   /     -16*log(10) + 16*log(7)         \
And|x <= -----------------------, -oo < x|
   \      -2*log(10) + 2*log(7)          /
$$x \leq \frac{- 16 \log{\left(10 \right)} + 16 \log{\left(7 \right)}}{- 2 \log{\left(10 \right)} + 2 \log{\left(7 \right)}} \wedge -\infty < x$$
(-oo < x)∧(x <= (-16*log(10) + 16*log(7))/(-2*log(10) + 2*log(7)))
Rapid solution 2 [src]
(-oo, 8]
$$x\ in\ \left(-\infty, 8\right]$$
x in Interval(-oo, 8)