Mister Exam

Other calculators

((x²(3-x))/x²-8x+16)≤0 inequation

A inequation with variable

The solution

You have entered [src]
 2                        
x *(3 - x)                
---------- - 8*x + 16 <= 0
     2                    
    x                     
$$\left(- 8 x + \frac{x^{2} \left(3 - x\right)}{x^{2}}\right) + 16 \leq 0$$
-8*x + (x^2*(3 - x))/x^2 + 16 <= 0
Detail solution
Given the inequality:
$$\left(- 8 x + \frac{x^{2} \left(3 - x\right)}{x^{2}}\right) + 16 \leq 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\left(- 8 x + \frac{x^{2} \left(3 - x\right)}{x^{2}}\right) + 16 = 0$$
Solve:
$$x_{1} = \frac{19}{9}$$
$$x_{1} = \frac{19}{9}$$
This roots
$$x_{1} = \frac{19}{9}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + \frac{19}{9}$$
=
$$\frac{181}{90}$$
substitute to the expression
$$\left(- 8 x + \frac{x^{2} \left(3 - x\right)}{x^{2}}\right) + 16 \leq 0$$
$$\left(- \frac{8 \cdot 181}{90} + \frac{\left(\frac{181}{90}\right)^{2} \left(3 - \frac{181}{90}\right)}{\left(\frac{181}{90}\right)^{2}}\right) + 16 \leq 0$$
9/10 <= 0

but
9/10 >= 0

Then
$$x \leq \frac{19}{9}$$
no execute
the solution of our inequality is:
$$x \geq \frac{19}{9}$$
         _____  
        /
-------•-------
       x1
Solving inequality on a graph
Rapid solution 2 [src]
[19/9, oo)
$$x\ in\ \left[\frac{19}{9}, \infty\right)$$
x in Interval(19/9, oo)
Rapid solution [src]
And(19/9 <= x, x < oo)
$$\frac{19}{9} \leq x \wedge x < \infty$$
(19/9 <= x)∧(x < oo)