Given the inequality:
$$x \log{\left(2 \right)} \geq 1$$
To solve this inequality, we must first solve the corresponding equation:
$$x \log{\left(2 \right)} = 1$$
Solve:
Given the linear equation:
log(2)*x = 1
Expand brackets in the left part
log2x = 1
Divide both parts of the equation by log(2)
x = 1 / (log(2))
$$x_{1} = \frac{1}{\log{\left(2 \right)}}$$
$$x_{1} = \frac{1}{\log{\left(2 \right)}}$$
This roots
$$x_{1} = \frac{1}{\log{\left(2 \right)}}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + \frac{1}{\log{\left(2 \right)}}$$
=
$$- \frac{1}{10} + \frac{1}{\log{\left(2 \right)}}$$
substitute to the expression
$$x \log{\left(2 \right)} \geq 1$$
$$\left(- \frac{1}{10} + \frac{1}{\log{\left(2 \right)}}\right) \log{\left(2 \right)} \geq 1$$
/ 1 1 \
|- -- + ------|*log(2) >= 1
\ 10 log(2)/
but
/ 1 1 \
|- -- + ------|*log(2) < 1
\ 10 log(2)/
Then
$$x \leq \frac{1}{\log{\left(2 \right)}}$$
no execute
the solution of our inequality is:
$$x \geq \frac{1}{\log{\left(2 \right)}}$$
_____
/
-------•-------
x1