Given the inequality:
$$\frac{\log{\left(2 \right)}}{5} \left(\frac{5}{2} - \frac{5 x}{2}\right) > -1$$
To solve this inequality, we must first solve the corresponding equation:
$$\frac{\log{\left(2 \right)}}{5} \left(\frac{5}{2} - \frac{5 x}{2}\right) = -1$$
Solve:
Given the equation:
log(2)/5*((5/2)-(5/2)*x) = -1
Expand expressions:
log(2)/2 - x*log(2)/2 = -1
Reducing, you get:
1 + log(2)/2 - x*log(2)/2 = 0
Expand brackets in the left part
1 + log2/2 - x*log2/2 = 0
Move free summands (without x)
from left part to right part, we given:
$$- \frac{x \log{\left(2 \right)}}{2} + \frac{\log{\left(2 \right)}}{2} = -1$$
Divide both parts of the equation by (log(2)/2 - x*log(2)/2)/x
x = -1 / ((log(2)/2 - x*log(2)/2)/x)
We get the answer: x = 1 + 2/log(2)
$$x_{1} = 1 + \frac{2}{\log{\left(2 \right)}}$$
$$x_{1} = 1 + \frac{2}{\log{\left(2 \right)}}$$
This roots
$$x_{1} = 1 + \frac{2}{\log{\left(2 \right)}}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + \left(1 + \frac{2}{\log{\left(2 \right)}}\right)$$
=
$$\frac{9}{10} + \frac{2}{\log{\left(2 \right)}}$$
substitute to the expression
$$\frac{\log{\left(2 \right)}}{5} \left(\frac{5}{2} - \frac{5 x}{2}\right) > -1$$
$$\frac{\log{\left(2 \right)}}{5} \left(\frac{5}{2} - \frac{5 \left(\frac{9}{10} + \frac{2}{\log{\left(2 \right)}}\right)}{2}\right) > -1$$
/1 5 \
|- - ------|*log(2)
\4 log(2)/ > -1
-------------------
5 the solution of our inequality is:
$$x < 1 + \frac{2}{\log{\left(2 \right)}}$$
_____
\
-------ο-------
x1