Mister Exam

Other calculators

log(2/5)*(2,5-2,5x)>-1 inequation

A inequation with variable

The solution

You have entered [src]
         /5   5*x\     
log(2/5)*|- - ---| > -1
         \2    2 /     
$$\left(\frac{5}{2} - \frac{5 x}{2}\right) \log{\left(\frac{2}{5} \right)} > -1$$
(5/2 - 5*x/2)*log(2/5) > -1
Detail solution
Given the inequality:
$$\left(\frac{5}{2} - \frac{5 x}{2}\right) \log{\left(\frac{2}{5} \right)} > -1$$
To solve this inequality, we must first solve the corresponding equation:
$$\left(\frac{5}{2} - \frac{5 x}{2}\right) \log{\left(\frac{2}{5} \right)} = -1$$
Solve:
Given the equation:
log(2/5)*((5/2)-(5/2)*x) = -1

Expand expressions:
-5*log(5)/2 + 5*log(2)/2 - 5*x*log(2)/2 + 5*x*log(5)/2 = -1

Reducing, you get:
1 - 5*log(5)/2 + 5*log(2)/2 - 5*x*log(2)/2 + 5*x*log(5)/2 = 0

Expand brackets in the left part
1 - 5*log5/2 + 5*log2/2 - 5*x*log2/2 + 5*x*log5/2 = 0

Move free summands (without x)
from left part to right part, we given:
$$- \frac{5 x \log{\left(2 \right)}}{2} + \frac{5 x \log{\left(5 \right)}}{2} - \frac{5 \log{\left(5 \right)}}{2} + \frac{5 \log{\left(2 \right)}}{2} = -1$$
Divide both parts of the equation by (-5*log(5)/2 + 5*log(2)/2 - 5*x*log(2)/2 + 5*x*log(5)/2)/x
x = -1 / ((-5*log(5)/2 + 5*log(2)/2 - 5*x*log(2)/2 + 5*x*log(5)/2)/x)

We get the answer: x = (2 + log(32/3125))/(5*log(2/5))
$$x_{1} = \frac{\log{\left(\frac{32}{3125} \right)} + 2}{5 \log{\left(\frac{2}{5} \right)}}$$
$$x_{1} = \frac{\log{\left(\frac{32}{3125} \right)} + 2}{5 \log{\left(\frac{2}{5} \right)}}$$
This roots
$$x_{1} = \frac{\log{\left(\frac{32}{3125} \right)} + 2}{5 \log{\left(\frac{2}{5} \right)}}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + \frac{\log{\left(\frac{32}{3125} \right)} + 2}{5 \log{\left(\frac{2}{5} \right)}}$$
=
$$- \frac{1}{10} + \frac{\log{\left(\frac{32}{3125} \right)} + 2}{5 \log{\left(\frac{2}{5} \right)}}$$
substitute to the expression
$$\left(\frac{5}{2} - \frac{5 x}{2}\right) \log{\left(\frac{2}{5} \right)} > -1$$
$$\left(\frac{5}{2} - \frac{5 \left(- \frac{1}{10} + \frac{\log{\left(\frac{32}{3125} \right)} + 2}{5 \log{\left(\frac{2}{5} \right)}}\right)}{2}\right) \log{\left(\frac{2}{5} \right)} > -1$$
/            / 32 \\              
|     2 + log|----||              
|11          \3125/|          > -1
|-- - -------------|*log(2/5)     
\4      2*log(2/5) /              

Then
$$x < \frac{\log{\left(\frac{32}{3125} \right)} + 2}{5 \log{\left(\frac{2}{5} \right)}}$$
no execute
the solution of our inequality is:
$$x > \frac{\log{\left(\frac{32}{3125} \right)} + 2}{5 \log{\left(\frac{2}{5} \right)}}$$
         _____  
        /
-------ο-------
       x1
Solving inequality on a graph
Rapid solution [src]
   /        2 - 5*log(5) + 5*log(2)    \
And|x < oo, ----------------------- < x|
   \          5*(-log(5) + log(2))     /
$$x < \infty \wedge \frac{- 5 \log{\left(5 \right)} + 2 + 5 \log{\left(2 \right)}}{5 \left(- \log{\left(5 \right)} + \log{\left(2 \right)}\right)} < x$$
(x < oo)∧((2 - 5*log(5) + 5*log(2))/(5*(-log(5) + log(2))) < x)
Rapid solution 2 [src]
 2 - 5*log(5) + 5*log(2)     
(-----------------------, oo)
   5*(-log(5) + log(2))      
$$x\ in\ \left(\frac{- 5 \log{\left(5 \right)} + 2 + 5 \log{\left(2 \right)}}{5 \left(- \log{\left(5 \right)} + \log{\left(2 \right)}\right)}, \infty\right)$$
x in Interval.open((-5*log(5) + 2 + 5*log(2))/(5*(-log(5) + log(2))), oo)