Mister Exam

Other calculators

  • How to use it?

  • Inequation:
  • lg^2x+lgx<=2
  • 15-5x>=0
  • x^2-1 x^2-1
  • log(4*x+1)(5*x-6)+log(5*x-6)(4*x+1)<=2
  • Identical expressions

  • (log^ two (one / five)*x^ two)-3 one log(1/ five)*x- eight < zero
  • ( logarithm of squared (1 divide by 5) multiply by x squared ) minus 31 logarithm of (1 divide by 5) multiply by x minus 8 less than 0
  • ( logarithm of to the power of two (one divide by five) multiply by x to the power of two) minus 3 one logarithm of (1 divide by five) multiply by x minus eight less than zero
  • (log2(1/5)*x2)-31log(1/5)*x-8<0
  • log21/5*x2-31log1/5*x-8<0
  • (log²(1/5)*x²)-31log(1/5)*x-8<0
  • (log to the power of 2(1/5)*x to the power of 2)-31log(1/5)*x-8<0
  • (log^2(1/5)x^2)-31log(1/5)x-8<0
  • (log2(1/5)x2)-31log(1/5)x-8<0
  • log21/5x2-31log1/5x-8<0
  • log^21/5x^2-31log1/5x-8<0
  • (log^2(1 divide by 5)*x^2)-31log(1 divide by 5)*x-8<0
  • Similar expressions

  • (log^2(1/5)*x^2)-31log(1/5)*x+8<0
  • (log^2(1/5)*x^2)+31log(1/5)*x-8<0

(log^2(1/5)*x^2)-31log(1/5)*x-8<0 inequation

A inequation with variable

The solution

You have entered [src]
   2       2                        
log (1/5)*x  - 31*log(1/5)*x - 8 < 0
$$\left(x^{2} \log{\left(\frac{1}{5} \right)}^{2} - x 31 \log{\left(\frac{1}{5} \right)}\right) - 8 < 0$$
x^2*log(1/5)^2 - x*31*log(1/5) - 8 < 0
Detail solution
Given the inequality:
$$\left(x^{2} \log{\left(\frac{1}{5} \right)}^{2} - x 31 \log{\left(\frac{1}{5} \right)}\right) - 8 < 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\left(x^{2} \log{\left(\frac{1}{5} \right)}^{2} - x 31 \log{\left(\frac{1}{5} \right)}\right) - 8 = 0$$
Solve:
Expand the expression in the equation
$$\left(x^{2} \log{\left(\frac{1}{5} \right)}^{2} - x 31 \log{\left(\frac{1}{5} \right)}\right) - 8 = 0$$
We get the quadratic equation
$$x^{2} \log{\left(5 \right)}^{2} + 31 x \log{\left(5 \right)} - 8 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = \log{\left(5 \right)}^{2}$$
$$b = 31 \log{\left(5 \right)}$$
$$c = -8$$
, then
D = b^2 - 4 * a * c = 

(31*log(5))^2 - 4 * (log(5)^2) * (-8) = 993*log(5)^2

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \frac{- 31 \log{\left(5 \right)} + \sqrt{993} \log{\left(5 \right)}}{2 \log{\left(5 \right)}^{2}}$$
$$x_{2} = \frac{- \sqrt{993} \log{\left(5 \right)} - 31 \log{\left(5 \right)}}{2 \log{\left(5 \right)}^{2}}$$
$$x_{1} = \frac{- 31 \log{\left(5 \right)} + \sqrt{993} \log{\left(5 \right)}}{2 \log{\left(5 \right)}^{2}}$$
$$x_{2} = \frac{- \sqrt{993} \log{\left(5 \right)} - 31 \log{\left(5 \right)}}{2 \log{\left(5 \right)}^{2}}$$
$$x_{1} = \frac{- 31 \log{\left(5 \right)} + \sqrt{993} \log{\left(5 \right)}}{2 \log{\left(5 \right)}^{2}}$$
$$x_{2} = \frac{- \sqrt{993} \log{\left(5 \right)} - 31 \log{\left(5 \right)}}{2 \log{\left(5 \right)}^{2}}$$
This roots
$$x_{2} = \frac{- \sqrt{993} \log{\left(5 \right)} - 31 \log{\left(5 \right)}}{2 \log{\left(5 \right)}^{2}}$$
$$x_{1} = \frac{- 31 \log{\left(5 \right)} + \sqrt{993} \log{\left(5 \right)}}{2 \log{\left(5 \right)}^{2}}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{2}$$
For example, let's take the point
$$x_{0} = x_{2} - \frac{1}{10}$$
=
$$\frac{- \sqrt{993} \log{\left(5 \right)} - 31 \log{\left(5 \right)}}{2 \log{\left(5 \right)}^{2}} + - \frac{1}{10}$$
=
$$\frac{- \sqrt{993} \log{\left(5 \right)} - 31 \log{\left(5 \right)}}{2 \log{\left(5 \right)}^{2}} - \frac{1}{10}$$
substitute to the expression
$$\left(x^{2} \log{\left(\frac{1}{5} \right)}^{2} - x 31 \log{\left(\frac{1}{5} \right)}\right) - 8 < 0$$
$$-8 + \left(- \left(\frac{- \sqrt{993} \log{\left(5 \right)} - 31 \log{\left(5 \right)}}{2 \log{\left(5 \right)}^{2}} - \frac{1}{10}\right) 31 \log{\left(\frac{1}{5} \right)} + \left(\frac{- \sqrt{993} \log{\left(5 \right)} - 31 \log{\left(5 \right)}}{2 \log{\left(5 \right)}^{2}} - \frac{1}{10}\right)^{2} \log{\left(\frac{1}{5} \right)}^{2}\right) < 0$$
                                         2                                                             
     /                      _____       \               /                      _____       \           
     |  1    -31*log(5) - \/ 993 *log(5)|     2         |  1    -31*log(5) - \/ 993 *log(5)|           
-8 + |- -- + ---------------------------| *log (5) + 31*|- -- + ---------------------------|*log(5) < 0
     |  10                 2            |               |  10                 2            |           
     \                2*log (5)         /               \                2*log (5)         /           
    

but
                                         2                                                             
     /                      _____       \               /                      _____       \           
     |  1    -31*log(5) - \/ 993 *log(5)|     2         |  1    -31*log(5) - \/ 993 *log(5)|           
-8 + |- -- + ---------------------------| *log (5) + 31*|- -- + ---------------------------|*log(5) > 0
     |  10                 2            |               |  10                 2            |           
     \                2*log (5)         /               \                2*log (5)         /           
    

Then
$$x < \frac{- \sqrt{993} \log{\left(5 \right)} - 31 \log{\left(5 \right)}}{2 \log{\left(5 \right)}^{2}}$$
no execute
one of the solutions of our inequality is:
$$x > \frac{- \sqrt{993} \log{\left(5 \right)} - 31 \log{\left(5 \right)}}{2 \log{\left(5 \right)}^{2}} \wedge x < \frac{- 31 \log{\left(5 \right)} + \sqrt{993} \log{\left(5 \right)}}{2 \log{\left(5 \right)}^{2}}$$
         _____  
        /     \  
-------ο-------ο-------
       x2      x1
Solving inequality on a graph
Rapid solution 2 [src]
  /       _____\    /       _____\  
 -\31 + \/ 993 /   -\31 - \/ 993 /  
(----------------, ----------------)
     2*log(5)          2*log(5)     
$$x\ in\ \left(- \frac{31 + \sqrt{993}}{2 \log{\left(5 \right)}}, - \frac{31 - \sqrt{993}}{2 \log{\left(5 \right)}}\right)$$
x in Interval.open(-(31 + sqrt(993))/(2*log(5)), -(31 - sqrt(993))/(2*log(5)))
Rapid solution [src]
   /             _____           _____    \
   |      31   \/ 993     31   \/ 993     |
   |    - -- + -------  - -- - -------    |
   |      2       2       2       2       |
And|x < --------------, -------------- < x|
   \        log(5)          log(5)        /
$$x < \frac{- \frac{31}{2} + \frac{\sqrt{993}}{2}}{\log{\left(5 \right)}} \wedge \frac{- \frac{\sqrt{993}}{2} - \frac{31}{2}}{\log{\left(5 \right)}} < x$$
(x < (-31/2 + sqrt(993)/2)/log(5))∧((-31/2 - sqrt(993)/2)/log(5) < x)